Praveen Kumar Donta , Chinmaya Kumar Dehury , Yu-Chen Hu
{"title":"Learning-driven Data Fabric Trends and Challenges for cloud-to-thing continuum","authors":"Praveen Kumar Donta , Chinmaya Kumar Dehury , Yu-Chen Hu","doi":"10.1016/j.jksuci.2024.102145","DOIUrl":null,"url":null,"abstract":"<div><p>This special issue is a collection of emerging trends and challenges in applying learning-driven approaches to data fabric architectures within the cloud-to-thing continuum. As data generation and processing increasingly occur at the edge, there is a growing need for intelligent, adaptive data management solutions that seamlessly operate across distributed environments. In this special issue, we received research contributions from various groups around the world. We chose the eight most appropriate and novel contributions to include in this special issue. These eight contributions were further categorized into three themes: Data Handling approaches, resource optimization and management, and security and attacks. Additionally, this editorial suggests future research directions that will potentially lead to groundbreaking insights, which could pave the way for a new era of learning techniques in Data Fabric and the Cloud-to-Thing Continuum.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 7","pages":"Article 102145"},"PeriodicalIF":5.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002349/pdfft?md5=286285bbd5dfa0b63dd8785bf5349c2e&pid=1-s2.0-S1319157824002349-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002349","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This special issue is a collection of emerging trends and challenges in applying learning-driven approaches to data fabric architectures within the cloud-to-thing continuum. As data generation and processing increasingly occur at the edge, there is a growing need for intelligent, adaptive data management solutions that seamlessly operate across distributed environments. In this special issue, we received research contributions from various groups around the world. We chose the eight most appropriate and novel contributions to include in this special issue. These eight contributions were further categorized into three themes: Data Handling approaches, resource optimization and management, and security and attacks. Additionally, this editorial suggests future research directions that will potentially lead to groundbreaking insights, which could pave the way for a new era of learning techniques in Data Fabric and the Cloud-to-Thing Continuum.
期刊介绍:
In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.