Mohammed Saif;Md. Zoheb Hassan;Md. Jahangir Hossain
{"title":"Decentralized Aggregation for Energy-Efficient Federated Learning in mmWave Aerial-Terrestrial Integrated Networks","authors":"Mohammed Saif;Md. Zoheb Hassan;Md. Jahangir Hossain","doi":"10.1109/TMLCN.2024.3410211","DOIUrl":null,"url":null,"abstract":"It is anticipated that aerial-terrestrial integrated networks incorporating unmanned aerial vehicles (UAVs) mounted relays will offer improved coverage and connectivity in the beyond 5G era. Meanwhile, federated learning (FL) is a promising distributed machine learning technique for building inference models over wireless networks due to its ability to maintain user privacy and reduce communication overhead. However, off-the-shelf FL models aggregate global parameters at a central parameter server (CPS), increasing energy consumption and latency, as well as inefficiently utilizing radio resource blocks (RRBs) for distributed user devices (UDs). This paper presents a resource-efficient and decentralized FL framework called FedMoD (federated learning with model dissemination), for millimeter-wave (mmWave) aerial-terrestrial integrated networks with the following two unique characteristics. Firstly, FedMoD incorporates a novel decentralized model dissemination scheme that uses UAVs as local model aggregators through UAV-to-UAV and device-to-device (D2D) communications. As a result, FedMoD 1) increases the number of participant UDs in developing the FL model; and 2) achieves global model aggregation without involving CPS. Secondly, FedMoD reduces FL’s energy consumption using radio resource management (RRM) under the constraints of over-the-air learning latency. To achieve this, by leveraging graph theory, FedMoD optimizes the scheduling of line-of-sight (LOS) UDs to suitable UAVs and RRBs over mmWave links and non-LOS UDs to available LOS UDs via overlay D2D communications. Extensive simulations reveal that FedMoD, despite being decentralized, offers the same convergence performance to the conventional centralized FL frameworks.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"2 ","pages":"1283-1304"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10550002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10550002/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It is anticipated that aerial-terrestrial integrated networks incorporating unmanned aerial vehicles (UAVs) mounted relays will offer improved coverage and connectivity in the beyond 5G era. Meanwhile, federated learning (FL) is a promising distributed machine learning technique for building inference models over wireless networks due to its ability to maintain user privacy and reduce communication overhead. However, off-the-shelf FL models aggregate global parameters at a central parameter server (CPS), increasing energy consumption and latency, as well as inefficiently utilizing radio resource blocks (RRBs) for distributed user devices (UDs). This paper presents a resource-efficient and decentralized FL framework called FedMoD (federated learning with model dissemination), for millimeter-wave (mmWave) aerial-terrestrial integrated networks with the following two unique characteristics. Firstly, FedMoD incorporates a novel decentralized model dissemination scheme that uses UAVs as local model aggregators through UAV-to-UAV and device-to-device (D2D) communications. As a result, FedMoD 1) increases the number of participant UDs in developing the FL model; and 2) achieves global model aggregation without involving CPS. Secondly, FedMoD reduces FL’s energy consumption using radio resource management (RRM) under the constraints of over-the-air learning latency. To achieve this, by leveraging graph theory, FedMoD optimizes the scheduling of line-of-sight (LOS) UDs to suitable UAVs and RRBs over mmWave links and non-LOS UDs to available LOS UDs via overlay D2D communications. Extensive simulations reveal that FedMoD, despite being decentralized, offers the same convergence performance to the conventional centralized FL frameworks.