Integrating State Data Assimilation and Innovative Model Parameterization Reduces Simulated Carbon Uptake in the Arctic and Boreal Region

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Journal of Geophysical Research: Biogeosciences Pub Date : 2024-09-13 DOI:10.1029/2024JG008004
Xueli Huo, Andrew M. Fox, Hamid Dashti, Charles Devine, William Gallery, William K. Smith, Brett Raczka, Jeffrey L. Anderson, Alistair Rogers, David J. P. Moore
{"title":"Integrating State Data Assimilation and Innovative Model Parameterization Reduces Simulated Carbon Uptake in the Arctic and Boreal Region","authors":"Xueli Huo,&nbsp;Andrew M. Fox,&nbsp;Hamid Dashti,&nbsp;Charles Devine,&nbsp;William Gallery,&nbsp;William K. Smith,&nbsp;Brett Raczka,&nbsp;Jeffrey L. Anderson,&nbsp;Alistair Rogers,&nbsp;David J. P. Moore","doi":"10.1029/2024JG008004","DOIUrl":null,"url":null,"abstract":"<p>Model representation of carbon uptake and storage is essential for accurate projection of the response of the arctic-boreal zone to a rapidly changing climate. Land model estimates of LAI and aboveground biomass that can have a marked influence on model projections of carbon uptake and storage vary substantially in the arctic and boreal zone, making it challenging to correctly evaluate model estimates of Gross Primary Productivity (GPP). To understand and correct bias of LAI and aboveground biomass in the Community Land Model (CLM), we assimilated the 8-day Moderate Resolution Imaging Spectroradiometer (MODIS) LAI observation and a machine learning product of annual aboveground biomass into CLM using an Ensemble Adjustment Kalman Filter (EAKF) in an experimental region including Alaska and Western Canada. Assimilating LAI and aboveground biomass reduced these model estimates by 58% and 72%, respectively. The change of aboveground biomass was consistent with independent estimates of canopy top height at both regional and site levels. The International Land Model Benchmarking system assessment showed that data assimilation significantly improved CLM's performance in simulating the carbon and hydrological cycles, as well as in representing the functional relationships between LAI and other variables. To further reduce the remaining bias in GPP after LAI bias correction, we re-parameterized CLM to account for low temperature suppression of photosynthesis. The LAI bias corrected model that included the new parameterization showed the best agreement with model benchmarks. Combining data assimilation with model parameterization provides a useful framework to assess photosynthetic processes in LSMs.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008004","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Model representation of carbon uptake and storage is essential for accurate projection of the response of the arctic-boreal zone to a rapidly changing climate. Land model estimates of LAI and aboveground biomass that can have a marked influence on model projections of carbon uptake and storage vary substantially in the arctic and boreal zone, making it challenging to correctly evaluate model estimates of Gross Primary Productivity (GPP). To understand and correct bias of LAI and aboveground biomass in the Community Land Model (CLM), we assimilated the 8-day Moderate Resolution Imaging Spectroradiometer (MODIS) LAI observation and a machine learning product of annual aboveground biomass into CLM using an Ensemble Adjustment Kalman Filter (EAKF) in an experimental region including Alaska and Western Canada. Assimilating LAI and aboveground biomass reduced these model estimates by 58% and 72%, respectively. The change of aboveground biomass was consistent with independent estimates of canopy top height at both regional and site levels. The International Land Model Benchmarking system assessment showed that data assimilation significantly improved CLM's performance in simulating the carbon and hydrological cycles, as well as in representing the functional relationships between LAI and other variables. To further reduce the remaining bias in GPP after LAI bias correction, we re-parameterized CLM to account for low temperature suppression of photosynthesis. The LAI bias corrected model that included the new parameterization showed the best agreement with model benchmarks. Combining data assimilation with model parameterization provides a useful framework to assess photosynthetic processes in LSMs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合状态数据同化和创新模型参数化降低北极和北方地区的模拟碳吸收量
要准确预测北极-北方地区对快速变化的气候的响应,碳吸收和碳储存的模型表示至关重要。在北极和北方地区,对碳吸收和储存模型预测有显著影响的陆地模型对陆地植被覆盖率(LAI)和地上生物量的估算存在很大差异,因此正确评估模型对总初级生产力(GPP)的估算具有挑战性。为了了解并纠正社区土地模型(CLM)中的 LAI 和地上生物量偏差,我们在包括阿拉斯加和加拿大西部在内的实验区域,使用集合调整卡尔曼滤波器(EAKF)将 8 天中分辨率成像分光仪(MODIS)的 LAI 观测数据和年地上生物量的机器学习产品同化到社区土地模型中。将 LAI 和地上生物量同化后,这些模型估计值分别减少了 58% 和 72%。地上生物量的变化与区域和地点层面对冠顶高度的独立估算一致。国际陆地模型基准系统评估表明,数据同化显著提高了陆地模型模拟碳循环和水文循环的性能,以及表现 LAI 与其他变量之间功能关系的性能。为了进一步减少 LAI 偏差校正后剩余的 GPP 偏差,我们对 CLM 进行了重新参数化,以考虑低温对光合作用的抑制。包含新参数化的 LAI 偏差校正模型与模型基准的一致性最好。将数据同化与模型参数化相结合,为评估 LSM 中的光合作用过程提供了一个有用的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
期刊最新文献
Integrating State Data Assimilation and Innovative Model Parameterization Reduces Simulated Carbon Uptake in the Arctic and Boreal Region Peat Particulate Organic Matter Accepts Electrons During In Situ Incubation in the Anoxic Subsurface of Ombrotrophic Bogs Quantifying Relative Contribution of Submerged Macrophytes to Sedimentary Organic Matter Using Concentrations and δ13C of n-Alkanes With the Bayesian Multi-Source Mixing Model: A Case Study From the Yangtze Floodplain Divergent Responses of Fir and Pine Trees to Increasing CO2 Levels in the Face of Climate Change Evidence for Wildland Fire Smoke Transport of Microbes From Terrestrial Sources to the Atmosphere and Back
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1