S. Imajo, Y. Miyoshi, Y. Kazama, K. Asamura, I. Shinohara, K. Shiokawa, Y. Kasahara, Y. Kasaba, A. Matsuoka, S.-Y. Wang, S. W. Y. Tam, T.-F. Chang, B.-J. Wang, C.-W. Jun, M. Teramoto, S. Kurita, F. Tsuchiya, A. Kumamoto, K. Saito, T. Hori
{"title":"Precipitation of Auroral Electrons Accelerated at Very High Altitudes: Impact on the Ionosphere and a Possible Acceleration Mechanism","authors":"S. Imajo, Y. Miyoshi, Y. Kazama, K. Asamura, I. Shinohara, K. Shiokawa, Y. Kasahara, Y. Kasaba, A. Matsuoka, S.-Y. Wang, S. W. Y. Tam, T.-F. Chang, B.-J. Wang, C.-W. Jun, M. Teramoto, S. Kurita, F. Tsuchiya, A. Kumamoto, K. Saito, T. Hori","doi":"10.1029/2024JA032696","DOIUrl":null,"url":null,"abstract":"<p>The Arase satellite observed the precipitation of monoenergetic electrons accelerated from a very high altitude above 32,000 km altitude on 16 September 2017. The event was selected in the period when the high-angular resolution channel of the electron detector looked at pitch angles within ∼5° from the ambient magnetic field direction, and thereby was the first to examine the detailed distribution of electron flux near the energy-dependent loss cone at such high altitudes. The potential energy below the satellite estimated from the observed energy-dependence of the loss cone was consistent with the energy of the upgoing ion beams, indicating that ionospheric ions were accelerated by a lower-altitude acceleration region. The accelerated electrons inside the loss cone carried a significant net field-aligned current (FAC) density corresponding to ionospheric-altitude FAC of up to ∼3μA/m<sup>2</sup>. Based on the anisotropy of the accelerated electrons, we estimated the height of the upper boundary of the acceleration region to be >∼2 <i>R</i><sub><i>E</i></sub> above the satellite. The height distribution of the acceleration region below the satellite, estimated from the frequency of auroral kilometric radiation, was ∼4,000–13,000 km altitude, suggesting that the very-high-altitude acceleration region was separated from the lower acceleration region. Additionally, we observed time domain structure (TDS) electric fields on a subsecond time scale with a thin FAC indicated by magnetic deflections. Such a TDS may be generated by the formation of double layers in the magnetotail, and its potential drop could significantly contribute (∼40%–60%) to the parallel energization of precipitating auroral electrons.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032696","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Arase satellite observed the precipitation of monoenergetic electrons accelerated from a very high altitude above 32,000 km altitude on 16 September 2017. The event was selected in the period when the high-angular resolution channel of the electron detector looked at pitch angles within ∼5° from the ambient magnetic field direction, and thereby was the first to examine the detailed distribution of electron flux near the energy-dependent loss cone at such high altitudes. The potential energy below the satellite estimated from the observed energy-dependence of the loss cone was consistent with the energy of the upgoing ion beams, indicating that ionospheric ions were accelerated by a lower-altitude acceleration region. The accelerated electrons inside the loss cone carried a significant net field-aligned current (FAC) density corresponding to ionospheric-altitude FAC of up to ∼3μA/m2. Based on the anisotropy of the accelerated electrons, we estimated the height of the upper boundary of the acceleration region to be >∼2 RE above the satellite. The height distribution of the acceleration region below the satellite, estimated from the frequency of auroral kilometric radiation, was ∼4,000–13,000 km altitude, suggesting that the very-high-altitude acceleration region was separated from the lower acceleration region. Additionally, we observed time domain structure (TDS) electric fields on a subsecond time scale with a thin FAC indicated by magnetic deflections. Such a TDS may be generated by the formation of double layers in the magnetotail, and its potential drop could significantly contribute (∼40%–60%) to the parallel energization of precipitating auroral electrons.