Quantum-Enhanced DRL Optimization for DoA Estimation and Task Offloading in ISAC Systems

Anal Paul;Keshav Singh;Aryan Kaushik;Chih-Peng Li;Octavia A. Dobre;Marco Di Renzo;Trung Q. Duong
{"title":"Quantum-Enhanced DRL Optimization for DoA Estimation and Task Offloading in ISAC Systems","authors":"Anal Paul;Keshav Singh;Aryan Kaushik;Chih-Peng Li;Octavia A. Dobre;Marco Di Renzo;Trung Q. Duong","doi":"10.1109/JSAC.2024.3460061","DOIUrl":null,"url":null,"abstract":"This work proposes a quantum-aided deep reinforcement learning (DRL) framework designed to enhance the accuracy of direction-of-arrival (DoA) estimation and the efficiency of computational task offloading in integrated sensing and communication systems. Traditional DRL approaches face challenges in handling high-dimensional state spaces and ensuring convergence to optimal policies within complex operational environments. The proposed quantum-aided DRL framework that operates in a military surveillance system exploits quantum computing’s parallel processing capabilities to encode operational states and actions into quantum states, significantly reducing the dimensionality of the decision space. For the very first time in literature, we propose a quantum-enhanced actor-critic method, utilizing quantum circuits for policy representation and optimization. Through comprehensive simulations, we demonstrate that our framework improves DoA estimation accuracy by 91.66% and 82.61% over existing DRL algorithms with faster convergence rate, and effectively manages the trade-off between sensing and communication and by optimizing task offloading decisions under stringent ultra-reliable low-latency communication requirements. Comparative analysis also reveals that our approach reduces the overall task offloading latency by 43.09% and 32.35% compared to the DRL-based deep deterministic policy gradient and proximal policy optimization algorithms, respectively.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 1","pages":"364-381"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10680116/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a quantum-aided deep reinforcement learning (DRL) framework designed to enhance the accuracy of direction-of-arrival (DoA) estimation and the efficiency of computational task offloading in integrated sensing and communication systems. Traditional DRL approaches face challenges in handling high-dimensional state spaces and ensuring convergence to optimal policies within complex operational environments. The proposed quantum-aided DRL framework that operates in a military surveillance system exploits quantum computing’s parallel processing capabilities to encode operational states and actions into quantum states, significantly reducing the dimensionality of the decision space. For the very first time in literature, we propose a quantum-enhanced actor-critic method, utilizing quantum circuits for policy representation and optimization. Through comprehensive simulations, we demonstrate that our framework improves DoA estimation accuracy by 91.66% and 82.61% over existing DRL algorithms with faster convergence rate, and effectively manages the trade-off between sensing and communication and by optimizing task offloading decisions under stringent ultra-reliable low-latency communication requirements. Comparative analysis also reveals that our approach reduces the overall task offloading latency by 43.09% and 32.35% compared to the DRL-based deep deterministic policy gradient and proximal policy optimization algorithms, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子增强型 DRL 优化用于 ISAC 系统中的 DoA 估算和任务卸载
本研究提出了一种量子辅助深度强化学习(DRL)框架,旨在提高综合传感和通信系统中到达方向(DoA)估计的准确性和计算任务卸载的效率。传统的DRL方法在处理高维状态空间和确保在复杂的操作环境中收敛到最优策略方面面临挑战。在军事监视系统中运行的量子辅助DRL框架利用量子计算的并行处理能力将操作状态和动作编码为量子状态,从而显着降低决策空间的维数。在文献中,我们首次提出了一种量子增强的行为者批评方法,利用量子电路进行策略表示和优化。通过综合仿真,我们证明了该框架比现有DRL算法的DoA估计精度提高了91.66%和82.61%,收敛速度更快,有效地管理了感知和通信之间的权衡,并在严格的超可靠低延迟通信要求下优化了任务卸载决策。对比分析还表明,与基于drl的深度确定性策略梯度和近端策略优化算法相比,我们的方法将总体任务卸载延迟分别降低了43.09%和32.35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Communications Society Information Corrections to “Coverage Rate Analysis for Integrated Sensing and Communication Networks” IEEE Journal on Selected Areas in Communications Publication Information Guest Editorial: Integrated Ground-Air-Space Wireless Networks for 6G Mobile—Part II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1