Results and implications for generative AI in a large introductory biomedical and health informatics course

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2024-09-13 DOI:10.1038/s41746-024-01251-0
William Hersh, Kate Fultz Hollis
{"title":"Results and implications for generative AI in a large introductory biomedical and health informatics course","authors":"William Hersh, Kate Fultz Hollis","doi":"10.1038/s41746-024-01251-0","DOIUrl":null,"url":null,"abstract":"Generative artificial intelligence (AI) systems have performed well at many biomedical tasks, but few studies have assessed their performance directly compared to students in higher-education courses. We compared student knowledge-assessment scores with prompting of 6 large-language model (LLM) systems as they would be used by typical students in a large online introductory course in biomedical and health informatics that is taken by graduate, continuing education, and medical students. The state-of-the-art LLM systems were prompted to answer multiple-choice questions (MCQs) and final exam questions. We compared the scores for 139 students (30 graduate students, 85 continuing education students, and 24 medical students) to the LLM systems. All of the LLMs scored between the 50th and 75th percentiles of students for MCQ and final exam questions. The performance of LLMs raises questions about student assessment in higher education, especially in courses that are knowledge-based and online.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-7"},"PeriodicalIF":12.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01251-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01251-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Generative artificial intelligence (AI) systems have performed well at many biomedical tasks, but few studies have assessed their performance directly compared to students in higher-education courses. We compared student knowledge-assessment scores with prompting of 6 large-language model (LLM) systems as they would be used by typical students in a large online introductory course in biomedical and health informatics that is taken by graduate, continuing education, and medical students. The state-of-the-art LLM systems were prompted to answer multiple-choice questions (MCQs) and final exam questions. We compared the scores for 139 students (30 graduate students, 85 continuing education students, and 24 medical students) to the LLM systems. All of the LLMs scored between the 50th and 75th percentiles of students for MCQ and final exam questions. The performance of LLMs raises questions about student assessment in higher education, especially in courses that are knowledge-based and online.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型生物医学和健康信息学入门课程中生成式人工智能的结果和影响
生成式人工智能(AI)系统在许多生物医学任务中表现出色,但很少有研究将它们的表现直接与高等教育课程中的学生进行比较评估。我们比较了学生在 6 个大型语言模型(LLM)系统提示下的知识评估得分,因为这些系统会被研究生、继续教育和医科学生选修的生物医学和健康信息学大型在线入门课程中的典型学生使用。最先进的 LLM 系统被提示回答多项选择题(MCQ)和期末考试题。我们将 139 名学生(30 名研究生、85 名进修生和 24 名医学生)的分数与 LLM 系统进行了比较。在 MCQ 和期末考试题中,所有 LLM 的得分都在学生的第 50 和 75 百分位数之间。法学硕士的表现提出了高等教育中学生评估的问题,尤其是在以知识为基础的在线课程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
Artificial Intelligence awarded two Nobel Prizes for innovations that will shape the future of medicine Spatial resolution enhancement using deep learning improves chest disease diagnosis based on thick slice CT Learning from the EHR to implement AI in healthcare A data-driven framework for identifying patient subgroups on which an AI/machine learning model may underperform Phenotype driven molecular genetic test recommendation for diagnosing pediatric rare disorders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1