Machine learning reveals the transcriptional regulatory network and circadian dynamics of Synechococcus elongatus PCC 7942

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-09-13 DOI:10.1073/pnas.2410492121
Yuan Yuan, Tahani Al Bulushi, Anand V. Sastry, Cigdem Sancar, Richard Szubin, Susan S. Golden, Bernhard O. Palsson
{"title":"Machine learning reveals the transcriptional regulatory network and circadian dynamics of Synechococcus elongatus PCC 7942","authors":"Yuan Yuan, Tahani Al Bulushi, Anand V. Sastry, Cigdem Sancar, Richard Szubin, Susan S. Golden, Bernhard O. Palsson","doi":"10.1073/pnas.2410492121","DOIUrl":null,"url":null,"abstract":"<jats:italic>Synechococcus elongatus</jats:italic> is an important cyanobacterium that serves as a versatile and robust model for studying circadian biology and photosynthetic metabolism. Its transcriptional regulatory network (TRN) is of fundamental interest, as it orchestrates the cell’s adaptation to the environment, including its response to sunlight. Despite the previous characterization of constituent parts of the <jats:italic>S. elongatus</jats:italic> TRN, a comprehensive layout of its topology remains to be established. Here, we decomposed a compendium of 300 high-quality RNA sequencing datasets of the model strain PCC 7942 using independent component analysis. We obtained 57 independently modulated gene sets, or iModulons, that explain 67% of the variance in the transcriptional response and 1) accurately reflect the activity of known transcriptional regulations, 2) capture functional components of photosynthesis, 3) provide hypotheses for regulon structures and functional annotations of poorly characterized genes, and 4) describe the transcriptional shifts under dynamic light conditions. This transcriptome-wide analysis of <jats:italic>S. elongatus</jats:italic> provides a quantitative reconstruction of the TRN and presents a knowledge base that can guide future investigations. Our systems-level analysis also provides a global TRN structure for <jats:italic>S. elongatus</jats:italic> PCC 7942.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2410492121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Synechococcus elongatus is an important cyanobacterium that serves as a versatile and robust model for studying circadian biology and photosynthetic metabolism. Its transcriptional regulatory network (TRN) is of fundamental interest, as it orchestrates the cell’s adaptation to the environment, including its response to sunlight. Despite the previous characterization of constituent parts of the S. elongatus TRN, a comprehensive layout of its topology remains to be established. Here, we decomposed a compendium of 300 high-quality RNA sequencing datasets of the model strain PCC 7942 using independent component analysis. We obtained 57 independently modulated gene sets, or iModulons, that explain 67% of the variance in the transcriptional response and 1) accurately reflect the activity of known transcriptional regulations, 2) capture functional components of photosynthesis, 3) provide hypotheses for regulon structures and functional annotations of poorly characterized genes, and 4) describe the transcriptional shifts under dynamic light conditions. This transcriptome-wide analysis of S. elongatus provides a quantitative reconstruction of the TRN and presents a knowledge base that can guide future investigations. Our systems-level analysis also provides a global TRN structure for S. elongatus PCC 7942.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习揭示了细长球藻 PCC 7942 的转录调控网络和昼夜节律动态
细长球藻(Synechococcus elongatus)是一种重要的蓝藻,是研究昼夜节律生物学和光合新陈代谢的多用途强健模型。它的转录调控网络(TRN)协调细胞对环境的适应,包括对阳光的反应,因此具有重要意义。尽管之前对细长根水螅 TRN 的组成成分进行了表征,但其拓扑结构的全面布局仍有待建立。在此,我们利用独立成分分析法分解了模式菌株 PCC 7942 的 300 个高质量 RNA 测序数据集。我们得到了 57 个独立调控的基因集(或 iModulons),它们解释了转录反应中 67% 的变异,并且 1) 准确反映了已知转录调控的活性;2) 捕获了光合作用的功能成分;3) 提供了调控子结构的假设和特征不明显基因的功能注释;4) 描述了动态光照条件下的转录转变。对S. elongatus的全转录组分析提供了对TRN的定量重建,并提供了可指导未来研究的知识基础。我们的系统级分析还为 S. elongatus PCC 7942 提供了一个全球 TRN 结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Reply to Majer et al.: Negotiating policy action for transformation requires both sociopolitical and behavioral perspectives. The behavioral negotiation perspective can reveal how to navigate discord in sustainability transformations constructively. Deafness due to loss of a TRPV channel eliminates mating behavior in Aedes aegypti males. Extremely rapid, yet noncatastrophic, preservation of the flattened-feathered and 3D dinosaurs of the Early Cretaceous of China. Soft matter mechanics of baseball's Rubbing Mud.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1