{"title":"Physics-Informed Graph-Based Learning to Enable Solving Optimal Distribution Switching Problem","authors":"Reza Bayani;Saeed Manshadi","doi":"10.1109/TPWRS.2024.3460427","DOIUrl":null,"url":null,"abstract":"This letter introduces a novel graph convolutional neural network (GCN) architecture for solving the optimal switching problem in distribution networks while integrating the underlying power flow equations in the learning process. The switching problem is formulated as a mixed-integer second-order cone program (MISOCP), recognized for its computational intensity making it impossible to solve in many real-world cases. Transforming the existing literature, the proposed learning algorithm is augmented with mathematical model information representing physical system constraints both during and post training stages to ensure the \n<italic>feasibility</i>\n of the rendered decisions. The findings highlight the significant potential of applying predictions from a linearized model to the MISOCP form.","PeriodicalId":13373,"journal":{"name":"IEEE Transactions on Power Systems","volume":"40 1","pages":"1160-1163"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10679928/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This letter introduces a novel graph convolutional neural network (GCN) architecture for solving the optimal switching problem in distribution networks while integrating the underlying power flow equations in the learning process. The switching problem is formulated as a mixed-integer second-order cone program (MISOCP), recognized for its computational intensity making it impossible to solve in many real-world cases. Transforming the existing literature, the proposed learning algorithm is augmented with mathematical model information representing physical system constraints both during and post training stages to ensure the
feasibility
of the rendered decisions. The findings highlight the significant potential of applying predictions from a linearized model to the MISOCP form.
期刊介绍:
The scope of IEEE Transactions on Power Systems covers the education, analysis, operation, planning, and economics of electric generation, transmission, and distribution systems for general industrial, commercial, public, and domestic consumption, including the interaction with multi-energy carriers. The focus of this transactions is the power system from a systems viewpoint instead of components of the system. It has five (5) key areas within its scope with several technical topics within each area. These areas are: (1) Power Engineering Education, (2) Power System Analysis, Computing, and Economics, (3) Power System Dynamic Performance, (4) Power System Operations, and (5) Power System Planning and Implementation.