Towards sustainable construction: Strength and microstructural assessment of Dillenia suffruticosa and Acacia auriculiformis leaf ash as novel supplementary cementitious materials
{"title":"Towards sustainable construction: Strength and microstructural assessment of Dillenia suffruticosa and Acacia auriculiformis leaf ash as novel supplementary cementitious materials","authors":"","doi":"10.1016/j.jobe.2024.110727","DOIUrl":null,"url":null,"abstract":"<div><p>Researchers are exploring local, recycled, and waste materials for construction to address environmental concerns. Concrete heavily depends on cement, contributing to energy consumption and greenhouse gas emissions. Substituting cement with alternatives like recycled materials can cut energy use and minimize the environmental impact on concrete production. This research represents the first investigation into using Dillenia Suffruticosa (DS) and Acacia Auriculiformis (AA) leaf ash as sustainable alternatives to cement in producing eco-friendly mortar, an area that other researchers have not previously explored. The study aims to investigate using DS and AA leaf ash as sustainable alternatives to cement in mortar production. In this study, the incorporation of DS and AA leaf ash as a partial replacement for cement was systematically varied in increments of 5 %, ranging from 5 % to 40 % of the total mortar volume. The ash was systematically incorporated into the mortar in increments of 5 %, ranging from 5 % to 40 % of the total mortar volume. The study further conducted a comprehensive investigation into the physical properties of the mortar, including consistency, bulk density, dry density, water absorption, and flow characteristics, alongside an analysis of its compressive strength. Microstructural behaviour was assessed using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and thermogravimetric analysis to provide a comprehensive analysis. Results indicate that the enhancement in compressive strength of DS ash specimens, relative to AA ash, ranged from 1.32 % to 24.49 % at 7 days, 5.81 %–16.86 % at 14 days, and 1.87 %–11.91 % at 28 days. Furthermore, the highest enhancement in compressive strength is observed with a composition containing 10 % DS ash and 5 % AA ash content, underscoring the superior performance of DS ash compared to AA ash. The mineralogical characteristics of DS and AA leaf ashes illustrate their effectiveness as supplementary cementitious materials in sustainable construction. The significant advantages of using DS and AA leaf ash as a cement substitute are environmental sustainability, innovative materials use, and contribution to sustainable construction.</p></div>","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352710224022952","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Researchers are exploring local, recycled, and waste materials for construction to address environmental concerns. Concrete heavily depends on cement, contributing to energy consumption and greenhouse gas emissions. Substituting cement with alternatives like recycled materials can cut energy use and minimize the environmental impact on concrete production. This research represents the first investigation into using Dillenia Suffruticosa (DS) and Acacia Auriculiformis (AA) leaf ash as sustainable alternatives to cement in producing eco-friendly mortar, an area that other researchers have not previously explored. The study aims to investigate using DS and AA leaf ash as sustainable alternatives to cement in mortar production. In this study, the incorporation of DS and AA leaf ash as a partial replacement for cement was systematically varied in increments of 5 %, ranging from 5 % to 40 % of the total mortar volume. The ash was systematically incorporated into the mortar in increments of 5 %, ranging from 5 % to 40 % of the total mortar volume. The study further conducted a comprehensive investigation into the physical properties of the mortar, including consistency, bulk density, dry density, water absorption, and flow characteristics, alongside an analysis of its compressive strength. Microstructural behaviour was assessed using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and thermogravimetric analysis to provide a comprehensive analysis. Results indicate that the enhancement in compressive strength of DS ash specimens, relative to AA ash, ranged from 1.32 % to 24.49 % at 7 days, 5.81 %–16.86 % at 14 days, and 1.87 %–11.91 % at 28 days. Furthermore, the highest enhancement in compressive strength is observed with a composition containing 10 % DS ash and 5 % AA ash content, underscoring the superior performance of DS ash compared to AA ash. The mineralogical characteristics of DS and AA leaf ashes illustrate their effectiveness as supplementary cementitious materials in sustainable construction. The significant advantages of using DS and AA leaf ash as a cement substitute are environmental sustainability, innovative materials use, and contribution to sustainable construction.
期刊介绍:
The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.