Mechanochemical "Cage-on-MOF” Strategy for Enhancing Gas Adsorption and Separation through Aperture Matching

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-09-14 DOI:10.1002/anie.202416884
Yu Liang, Gongfu Xie, Kang-Kai Liu, Meng Jin, Yuanyuan Chen, Xiaoxin Yang, Zong-Jie Guan, Hang Xing, Yu Fang
{"title":"Mechanochemical \"Cage-on-MOF” Strategy for Enhancing Gas Adsorption and Separation through Aperture Matching","authors":"Yu Liang, Gongfu Xie, Kang-Kai Liu, Meng Jin, Yuanyuan Chen, Xiaoxin Yang, Zong-Jie Guan, Hang Xing, Yu Fang","doi":"10.1002/anie.202416884","DOIUrl":null,"url":null,"abstract":"Post-modification of porous materials with molecular modulators has emerged as a well-established strategy for improving gas adsorption and separation. However, a notable challenge lies in maintaining porosity and the limited applicability of the current method. In this study, we employed the mechanochemical \"Cage-on-MOF\" strategy, utilizing porous coordination cages (PCCs) with intrinsic pores and apertures as surface modulators to improve the gas adsorption and separation properties of the parent MOFs. We demonstrated the fast and facile preparation of 28 distinct MOF@PCC composites by combining 7 MOFs with 4 PCCs with varying aperture sizes and exposed functional groups through a mechanochemical reaction in 5 mins. Only the combinations of PCCs and MOFs with closely matched aperture sizes exhibited enhanced gas adsorption and separation performance. Specifically, MOF-808@PCC-4 exhibited a significantly increased C2H2 uptake (+64%) and a longer CO2/C2H2 separation retention time (+40%). MIL-101@PCC-4 achieved a substantial C2H2 adsorption capacity of 6.11 mmol/g. This work not only highlights the broad applicability of the mechanochemical \"Cage-on-MOF” strategy for the functionalization of a wide range of MOFs but also establishes potential design principles for the development of hybrid porous materials with enhanced gas adsorption and separation capabilities, along with promising applications in catalysis and intracellular delivery.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416884","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Post-modification of porous materials with molecular modulators has emerged as a well-established strategy for improving gas adsorption and separation. However, a notable challenge lies in maintaining porosity and the limited applicability of the current method. In this study, we employed the mechanochemical "Cage-on-MOF" strategy, utilizing porous coordination cages (PCCs) with intrinsic pores and apertures as surface modulators to improve the gas adsorption and separation properties of the parent MOFs. We demonstrated the fast and facile preparation of 28 distinct MOF@PCC composites by combining 7 MOFs with 4 PCCs with varying aperture sizes and exposed functional groups through a mechanochemical reaction in 5 mins. Only the combinations of PCCs and MOFs with closely matched aperture sizes exhibited enhanced gas adsorption and separation performance. Specifically, MOF-808@PCC-4 exhibited a significantly increased C2H2 uptake (+64%) and a longer CO2/C2H2 separation retention time (+40%). MIL-101@PCC-4 achieved a substantial C2H2 adsorption capacity of 6.11 mmol/g. This work not only highlights the broad applicability of the mechanochemical "Cage-on-MOF” strategy for the functionalization of a wide range of MOFs but also establishes potential design principles for the development of hybrid porous materials with enhanced gas adsorption and separation capabilities, along with promising applications in catalysis and intracellular delivery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过孔径匹配增强气体吸附和分离的机械化学 "MOF 笼 "策略
用分子调制剂对多孔材料进行后改性已成为一种行之有效的改善气体吸附和分离的策略。然而,一个显著的挑战在于如何保持多孔性以及当前方法的适用性有限。在本研究中,我们采用了机械化学 "Cage-on-MOF "策略,利用具有内在孔隙和孔径的多孔配位笼(PCCs)作为表面调制剂,来改善母体 MOFs 的气体吸附和分离性能。我们通过机械化学反应在 5 分钟内将 7 种 MOF 与 4 种具有不同孔径大小和暴露官能团的 PCC 结合在一起,快速、简便地制备出了 28 种不同的 MOF@PCC 复合材料。只有孔径大小非常匹配的 PCC 和 MOF 组合才具有更强的气体吸附和分离性能。具体来说,MOF-808@PCC-4 的 C2H2 吸收率显著提高(+64%),CO2/C2H2 分离保留时间延长(+40%)。MIL-101@PCC-4 的 C2H2 吸附能力达到了 6.11 mmol/g。这项工作不仅突出了机械化学 "Cage-on-MOF "策略在多种 MOFs 功能化方面的广泛适用性,而且为开发具有更强气体吸附和分离能力的混合多孔材料确立了潜在的设计原则,同时在催化和细胞内输送方面也具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Dynamic Active Sites in Electrocatalysis Electrochemical identification and quantification of through-plane proton channels in graphene oxide membranes Enhancing Carrier Behavior via Controlled Molecular Film Formation Engineering Leads to Significant Improvement in Electroluminescence Fluorine-lodged high-valent high-entropy layered double hydroxide for efficient, long-lasting zinc-air batteries Control of Dynamic Chirality in Donor-Acceptor Fluorophores
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1