Origin of Enhanced Oxygen Evolution in Restructured Metal–Organic Frameworks for Anion Exchange Membrane Water Electrolysis

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-09-13 DOI:10.1002/anie.202413916
Ying Li, Liu Yang, Xiaolei Hao, Xiaopei Xu, Lingling Xu, Prof. Bo Wei, Prof. Zhongwei Chen
{"title":"Origin of Enhanced Oxygen Evolution in Restructured Metal–Organic Frameworks for Anion Exchange Membrane Water Electrolysis","authors":"Ying Li,&nbsp;Liu Yang,&nbsp;Xiaolei Hao,&nbsp;Xiaopei Xu,&nbsp;Lingling Xu,&nbsp;Prof. Bo Wei,&nbsp;Prof. Zhongwei Chen","doi":"10.1002/anie.202413916","DOIUrl":null,"url":null,"abstract":"<p>Metal–Organic Frameworks (MOFs), praised for structural flexibility and tunability, are prominent catalyst prototypes for exploring oxygen evolution reaction (OER). Yet, their intricate transformations under OER, especially in industrial high-current environments, pose significant challenges in accurately elucidating their structure–activity correlation. Here, we harnessed an electrooxidation process for controllable MOF reconstruction, discovering that Fe doping expedites Ni(Fe) MOF structural evolution, accompanied by the elongation of Ni−O bonds, monitored by in situ Raman and UV/Visible spectroscopy. Theoretical modeling further reveals that Fe doping and defect-induced tensile strain in the NiO<sub>6</sub> octahedra augments the metal <i>ds-O p</i> hybridization, optimizing their adsorption behavior and augmenting OER activity. The reconstructed Ni(Fe) MOF, serving as the anode in anion exchange membrane water electrolysis, achieves a noteworthy current density of 3300 mA cm<sup>−2</sup> at 2.2 V while maintaining equally stable operation 500 mA cm<sup>−2</sup> for 300 h and 1000 mA cm<sup>−2</sup> for 170 h. This undertaking elevates our comprehension of OER catalyst reconstruction, furnishing promising avenues for designing highly efficacious catalysts across electrochemical platforms.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202413916","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal–Organic Frameworks (MOFs), praised for structural flexibility and tunability, are prominent catalyst prototypes for exploring oxygen evolution reaction (OER). Yet, their intricate transformations under OER, especially in industrial high-current environments, pose significant challenges in accurately elucidating their structure–activity correlation. Here, we harnessed an electrooxidation process for controllable MOF reconstruction, discovering that Fe doping expedites Ni(Fe) MOF structural evolution, accompanied by the elongation of Ni−O bonds, monitored by in situ Raman and UV/Visible spectroscopy. Theoretical modeling further reveals that Fe doping and defect-induced tensile strain in the NiO6 octahedra augments the metal ds-O p hybridization, optimizing their adsorption behavior and augmenting OER activity. The reconstructed Ni(Fe) MOF, serving as the anode in anion exchange membrane water electrolysis, achieves a noteworthy current density of 3300 mA cm−2 at 2.2 V while maintaining equally stable operation 500 mA cm−2 for 300 h and 1000 mA cm−2 for 170 h. This undertaking elevates our comprehension of OER catalyst reconstruction, furnishing promising avenues for designing highly efficacious catalysts across electrochemical platforms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于阴离子交换膜电解水的重组金属有机框架中增强氧进化的起源
金属有机框架(MOFs)因其结构的灵活性和可调性而备受赞誉,是探索氧进化反应(OER)的重要催化剂原型。然而,它们在氧进化反应(尤其是在工业大电流环境下)中的复杂转变给准确阐明其结构与活性的相关性带来了巨大挑战。在这里,我们利用电氧化过程实现了可控的 MOF 重构,发现铁的掺杂加速了 Ni(Fe)-MOF 的结构演化,同时伴随着 Ni-O 键的伸长,并通过原位拉曼光谱和紫外可见光谱进行了监测。理论建模进一步表明,NiO6 八面体中的铁掺杂和缺陷诱导的拉伸应变增强了金属 ds-Op 杂化,优化了它们的吸附行为,提高了 OER 活性。重构的 Ni(Fe)-MOF 可作为阴离子交换膜水电解的阳极,在 2.2 V 电压下达到 3.3 A cm-2 的显著电流密度,同时在 0.5 A cm-2 到 1 A cm-2 的 160 小时内保持同样稳定的运行。这项研究提高了我们对 OER 催化剂重构的理解,为设计跨电化学平台的高效催化剂提供了前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
N-Heterocyclic Carbene Monolayers on Nickel, Iron, and Steel by a Radical-to-Carbene Strategy. Amino Acid Platform for Poly(amino ester)s: Controlled Ring-Opening Polymerization, Complete Recyclability, and Tunable Polymerizability/Depolymerizability. Mesoporous Engineering of Single-Atom Catalyst for Industry-Level Electrocatalytic CO2 Reduction in Membrane Electrode Assemblies. Steering Pulsed Electrochemistry Selectivity Toward Singlet Oxygen via Dynamic Intermediate Management. Yb-Doped Cu-Based Catalyst Boosting Electrochemical CO2-to-C2+ Reduction Across pH Range at Ampere-Level Current Density.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1