Long-Range Ballistic Propagation of 80% Excitonic Fraction Polaritons in a Perovskite Metasurface at Room Temperature

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-09-13 DOI:10.1021/acs.nanolett.4c02696
Nguyen Ha My Dang, Simone Zanotti, Emmanuel Drouard, Céline Chevalier, Gaëlle Trippé-Allard, Emmanuelle Deleporte, Christian Seassal, Dario Gerace, Hai Son Nguyen
{"title":"Long-Range Ballistic Propagation of 80% Excitonic Fraction Polaritons in a Perovskite Metasurface at Room Temperature","authors":"Nguyen Ha My Dang, Simone Zanotti, Emmanuel Drouard, Céline Chevalier, Gaëlle Trippé-Allard, Emmanuelle Deleporte, Christian Seassal, Dario Gerace, Hai Son Nguyen","doi":"10.1021/acs.nanolett.4c02696","DOIUrl":null,"url":null,"abstract":"Exciton-polaritons, hybrid light-matter excitations arising from the strong coupling between excitons in semiconductors and photons in photonic nanostructures, are crucial for exploring the physics of quantum fluids of light and developing all-optical devices. Achieving room temperature propagation of polaritons with a large excitonic fraction is challenging but vital, e.g., for nonlinear light transport. We report on room temperature propagation of exciton-polaritons in a metasurface made from a subwavelength lattice of perovskite pillars. The large Rabi splitting, much greater than the optical phonon energy, decouples the lower polariton band from the phonon bath of the perovskite. These cooled polaritons, in combination with the high group velocity achieved through the metasurface design, enable long-range propagation, exceeding hundreds of micrometers even with an 80% excitonic component. Furthermore, the design of the metasurface introduces an original mechanism for unidirectional propagation through polarization control, suggesting a new avenue for the development of advanced polaritonic devices.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02696","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Exciton-polaritons, hybrid light-matter excitations arising from the strong coupling between excitons in semiconductors and photons in photonic nanostructures, are crucial for exploring the physics of quantum fluids of light and developing all-optical devices. Achieving room temperature propagation of polaritons with a large excitonic fraction is challenging but vital, e.g., for nonlinear light transport. We report on room temperature propagation of exciton-polaritons in a metasurface made from a subwavelength lattice of perovskite pillars. The large Rabi splitting, much greater than the optical phonon energy, decouples the lower polariton band from the phonon bath of the perovskite. These cooled polaritons, in combination with the high group velocity achieved through the metasurface design, enable long-range propagation, exceeding hundreds of micrometers even with an 80% excitonic component. Furthermore, the design of the metasurface introduces an original mechanism for unidirectional propagation through polarization control, suggesting a new avenue for the development of advanced polaritonic devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
室温下过氧化物金属表面中 80% 激子分数极化子的远距离弹道传播
激子-极化子是由半导体中的激子和光子纳米结构中的光子之间的强耦合产生的光物质混合激发,对于探索光量子流体物理学和开发全光学设备至关重要。实现具有较大激子分数的极化子的室温传播具有挑战性,但对于非线性光传输等至关重要。我们报告了激子-极化子在由过氧化物晶柱的亚波长晶格构成的元表面中的室温传播。巨大的拉比分裂(远大于光学声子能量)使下极化子带与包晶的声子槽脱钩。这些冷却的极化子与元表面设计实现的高群速度相结合,实现了长距离传播,即使激子成分为 80%,传播距离也超过数百微米。此外,元表面的设计还引入了通过极化控制实现单向传播的独创机制,为先进极化子器件的开发提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Efficient Thermo-Optic Switching and Modulating in Nonlocal Metasurfaces Issue Editorial Masthead Issue Publication Information Bubble-Inspired Multifunctional Magnetic Microrobots for Integrated Multidimensional Targeted Biosensing. An Alternating-Electric-Field-Driven Assembly of DNA Nanoparticles into FCC Crystals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1