Field-Free Spin–Orbit Torque Switching in Janus Chromium Dichalcogenides

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-09-13 DOI:10.1021/acs.nanolett.4c03029
Libor Vojáček, Joaquín Medina Dueñas, Jing Li, Fatima Ibrahim, Aurélien Manchon, Stephan Roche, Mairbek Chshiev, José H. García
{"title":"Field-Free Spin–Orbit Torque Switching in Janus Chromium Dichalcogenides","authors":"Libor Vojáček, Joaquín Medina Dueñas, Jing Li, Fatima Ibrahim, Aurélien Manchon, Stephan Roche, Mairbek Chshiev, José H. García","doi":"10.1021/acs.nanolett.4c03029","DOIUrl":null,"url":null,"abstract":"We predict a very large spin–orbit torque (SOT) capability of magnetic chromium-based transition-metal dichalcogenide (TMD) monolayers in their Janus forms CrXTe, with X = S, Se. The structural inversion symmetry breaking, inherent to Janus structures is responsible for a large SOT response generated by giant Rashba splitting, equivalent to that obtained by applying a transverse electric field of ∼100 V nm<sup>–1</sup> in non-Janus CrTe<sub>2</sub>, completely out of experimental reach. By performing transport simulations on carefully derived Wannier tight-binding models, Janus systems are found to exhibit an SOT performance comparable to the most efficient two-dimensional materials, while additionally allowing for field-free perpendicular magnetization switching, due to their reduced in-plane symmetry. Altogether, our findings evidence that magnetic Janus TMDs stand as suitable candidates for ultimate SOT-MRAM devices in an ultracompact self-induced SOT scheme.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03029","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We predict a very large spin–orbit torque (SOT) capability of magnetic chromium-based transition-metal dichalcogenide (TMD) monolayers in their Janus forms CrXTe, with X = S, Se. The structural inversion symmetry breaking, inherent to Janus structures is responsible for a large SOT response generated by giant Rashba splitting, equivalent to that obtained by applying a transverse electric field of ∼100 V nm–1 in non-Janus CrTe2, completely out of experimental reach. By performing transport simulations on carefully derived Wannier tight-binding models, Janus systems are found to exhibit an SOT performance comparable to the most efficient two-dimensional materials, while additionally allowing for field-free perpendicular magnetization switching, due to their reduced in-plane symmetry. Altogether, our findings evidence that magnetic Janus TMDs stand as suitable candidates for ultimate SOT-MRAM devices in an ultracompact self-induced SOT scheme.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
杰纳斯二卤化铬中的无场自旋-轨道转矩转换
我们预测,磁性铬基过渡金属二钙化物(TMD)单层具有非常大的自旋轨道转矩(SOT)能力,其简并形式为 CrXTe(X = S、Se)。Janus 结构固有的结构反转对称性破坏是巨型 Rashba 分裂产生巨大 SOT 响应的原因,这种响应相当于在非 Janus CrTe2 中施加 100 V nm-1 的横向电场所产生的响应,完全超出了实验范围。通过在精心推导的万尼尔紧密结合模型上进行传输模拟,我们发现 Janus 系统的 SOT 性能可与最高效的二维材料相媲美,同时由于其平面内对称性降低,还能实现无磁场垂直磁化切换。总之,我们的研究结果证明,磁性 Janus TMD 是超小型自诱导 SOT 方案中最终 SOT-MRAM 器件的合适候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
DNA Nanostructure Disintegration-Assisted SPAAC Ligation for Electrochemical Biosensing How Membrane Flexibility Impacts Permeation and Separation of Gas through Nanoporous Graphenes What Puts the “Tribo” in Triboelectricity? Engineered Platelet for In Situ Natural Killer Cell Activation to Inhibit Tumor Recurrence Pushing the Limits of Photoconductivity via Hot Electrons in Deep Trap States in Plasmonic Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1