Photolithography-Free, Solution-Processable Perovskite Electrodes for High-Performance Organic Transistors

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-09-13 DOI:10.1021/acs.nanolett.4c03151
Ping-An Chen, Yu Liu, Jiangnan Xia, Jiaqi Ding, Yu Zhang, Zhenqi Gong, Xi Zeng, Jiakun Xue, Guowei Liu, Lang Jiang, Lei Liao, Yuanyuan Hu
{"title":"Photolithography-Free, Solution-Processable Perovskite Electrodes for High-Performance Organic Transistors","authors":"Ping-An Chen, Yu Liu, Jiangnan Xia, Jiaqi Ding, Yu Zhang, Zhenqi Gong, Xi Zeng, Jiakun Xue, Guowei Liu, Lang Jiang, Lei Liao, Yuanyuan Hu","doi":"10.1021/acs.nanolett.4c03151","DOIUrl":null,"url":null,"abstract":"Solution-processable electrodes are promising for next-generation electronics due to their simplicity, cost-effectiveness, and potential for large-area fabrication. However, current solution-processable electrodes based on conductive polymers, carbon-based compounds, and metal nanowires face challenges related to stability, patterning, and production scalability. Here we introduce a novel approach using 3D tin halide perovskites (THPs) combined with a photolithography-free solution patterning technique to fabricate solution-processed electrodes. We demonstrate the preparation of highly conductive CsSnI<sub>3</sub> films (234.9 S cm<sup>–1</sup>) and the fabrication of patterned 35 × 35 perovskite electrode arrays on a 4-in. silicon wafer. These electrodes, used as source/drain electrodes in organic transistors, resulted in devices showing high uniformity and stability. This electrode fabrication strategy is also applicable to other 3D THPs like FASnI<sub>3</sub> and MASnI<sub>3</sub>, showcasing versatility for diverse applications. The results highlight the feasibility and advantages of using 3D THPs as solution-processable electrodes, providing a new material system for the advancement of solution-processed electronics.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03151","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solution-processable electrodes are promising for next-generation electronics due to their simplicity, cost-effectiveness, and potential for large-area fabrication. However, current solution-processable electrodes based on conductive polymers, carbon-based compounds, and metal nanowires face challenges related to stability, patterning, and production scalability. Here we introduce a novel approach using 3D tin halide perovskites (THPs) combined with a photolithography-free solution patterning technique to fabricate solution-processed electrodes. We demonstrate the preparation of highly conductive CsSnI3 films (234.9 S cm–1) and the fabrication of patterned 35 × 35 perovskite electrode arrays on a 4-in. silicon wafer. These electrodes, used as source/drain electrodes in organic transistors, resulted in devices showing high uniformity and stability. This electrode fabrication strategy is also applicable to other 3D THPs like FASnI3 and MASnI3, showcasing versatility for diverse applications. The results highlight the feasibility and advantages of using 3D THPs as solution-processable electrodes, providing a new material system for the advancement of solution-processed electronics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高性能有机晶体管的免光刻、可溶液加工的 Perovskite 电极
溶液可加工电极因其简便性、成本效益和大面积制造的潜力,在下一代电子技术中大有可为。然而,目前基于导电聚合物、碳基化合物和金属纳米线的溶液可加工电极面临着稳定性、图案化和生产可扩展性方面的挑战。在这里,我们介绍了一种新方法,利用三维卤化锡包荧光体(THPs)结合免光刻溶液图案化技术来制造溶液加工电极。我们展示了高导电性 CsSnI3 薄膜(234.9 S cm-1)的制备过程,以及在 4 英寸硅晶片上制作 35 × 35 包晶体图案化电极阵列的过程。这些电极在有机晶体管中用作源极/漏极,其器件显示出高度的一致性和稳定性。这种电极制造策略也适用于其他三维 THP,如 FASnI3 和 MASnI3,展示了其在各种应用中的多功能性。研究结果凸显了使用三维 THPs 作为溶液加工电极的可行性和优势,为溶液加工电子学的发展提供了一种新的材料系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
DNA Nanostructure Disintegration-Assisted SPAAC Ligation for Electrochemical Biosensing How Membrane Flexibility Impacts Permeation and Separation of Gas through Nanoporous Graphenes What Puts the “Tribo” in Triboelectricity? Engineered Platelet for In Situ Natural Killer Cell Activation to Inhibit Tumor Recurrence Pushing the Limits of Photoconductivity via Hot Electrons in Deep Trap States in Plasmonic Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1