{"title":"Minimal model for reservoir computing","authors":"Yuzuru Sato , Miki U. Kobayashi","doi":"10.1016/j.physd.2024.134360","DOIUrl":null,"url":null,"abstract":"<div><p>A minimal model for reservoir computing is studied. We demonstrate that a reservoir computer exists that emulates given coupled maps by constructing a modularised network. We describe a possible mechanism for collapses of the emulation in the reservoir computing by introducing a measure of finite scale deviation. Such transitory behaviour is caused by either (i) an escape from a finite-time stagnation near an unstable chaotic set, or (ii) a critical transition driven by the effective parameter drift. Our approach reveals the essential mechanism for reservoir computing and provides insights into the design of reservoir computer for practical applications.</p></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"470 ","pages":"Article 134360"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003105","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A minimal model for reservoir computing is studied. We demonstrate that a reservoir computer exists that emulates given coupled maps by constructing a modularised network. We describe a possible mechanism for collapses of the emulation in the reservoir computing by introducing a measure of finite scale deviation. Such transitory behaviour is caused by either (i) an escape from a finite-time stagnation near an unstable chaotic set, or (ii) a critical transition driven by the effective parameter drift. Our approach reveals the essential mechanism for reservoir computing and provides insights into the design of reservoir computer for practical applications.
我们研究了水库计算的最小模型。我们证明,水库计算机可以通过构建模块化网络来模拟给定的耦合地图。我们通过引入有限尺度偏差度量,描述了水库计算中模拟崩溃的可能机制。造成这种短暂行为的原因是:(i) 从不稳定性混沌集附近的有限时间停滞中逃脱,或 (ii) 由有效参数漂移驱动的临界转换。我们的方法揭示了水库计算的基本机制,并为实际应用中水库计算机的设计提供了启示。
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.