Next-generation AMA1-based plasmids for enhanced heterologous expression in filamentous fungi

IF 5.7 2区 生物学 Microbial Biotechnology Pub Date : 2024-09-14 DOI:10.1111/1751-7915.70010
Indra Roux, Clara Woodcraft, Nicolau Sbaraini, Amy Pepper, Emily Wong, Joe Bracegirdle, Yit-Heng Chooi
{"title":"Next-generation AMA1-based plasmids for enhanced heterologous expression in filamentous fungi","authors":"Indra Roux,&nbsp;Clara Woodcraft,&nbsp;Nicolau Sbaraini,&nbsp;Amy Pepper,&nbsp;Emily Wong,&nbsp;Joe Bracegirdle,&nbsp;Yit-Heng Chooi","doi":"10.1111/1751-7915.70010","DOIUrl":null,"url":null,"abstract":"<p>Episomal AMA1-based plasmids are increasingly used for expressing biosynthetic pathways and CRISPR/Cas systems in filamentous fungi cell factories due to their high transformation efficiency and multicopy nature. However, the gene expression from AMA1 plasmids has been observed to be highly heterogeneous in growing mycelia. To overcome this limitation, here we developed next-generation AMA1-based plasmids that ensure homogeneous and strong expression. We achieved this by evaluating various degradation tags fused to the auxotrophic marker gene on the AMA1 plasmid, which introduces a more stringent selection pressure throughout multicellular fungal growth. With these improved plasmids, we observed in <i>Aspergillus nidulans</i> a 5-fold increase in the expression of a fluorescent reporter, a doubling in the efficiency of a CRISPRa system for genome mining, and a up to a 10-fold increase in the production of heterologous natural product metabolites. This strategy has the potential to be applied to diverse filamentous fungi.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 9","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70010","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Episomal AMA1-based plasmids are increasingly used for expressing biosynthetic pathways and CRISPR/Cas systems in filamentous fungi cell factories due to their high transformation efficiency and multicopy nature. However, the gene expression from AMA1 plasmids has been observed to be highly heterogeneous in growing mycelia. To overcome this limitation, here we developed next-generation AMA1-based plasmids that ensure homogeneous and strong expression. We achieved this by evaluating various degradation tags fused to the auxotrophic marker gene on the AMA1 plasmid, which introduces a more stringent selection pressure throughout multicellular fungal growth. With these improved plasmids, we observed in Aspergillus nidulans a 5-fold increase in the expression of a fluorescent reporter, a doubling in the efficiency of a CRISPRa system for genome mining, and a up to a 10-fold increase in the production of heterologous natural product metabolites. This strategy has the potential to be applied to diverse filamentous fungi.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于增强丝状真菌异源表达的基于 AMA1 的新一代质粒
基于外显子 AMA1 的质粒因其转化效率高和多拷贝的特性,越来越多地被用于表达丝状真菌细胞工厂中的生物合成途径和 CRISPR/Cas 系统。然而,在生长的菌丝体中,AMA1 质粒的基因表达被观察到具有高度异质性。为了克服这一局限性,我们开发了基于 AMA1 的下一代质粒,以确保基因表达的均匀性和强度。我们通过评估与 AMA1 质粒上的辅助营养标记基因融合的各种降解标记来实现这一目标,这在整个多细胞真菌生长过程中引入了更严格的选择压力。利用这些改良质粒,我们在裸曲霉中观察到荧光报告基因的表达量提高了 5 倍,用于基因组挖掘的 CRISPRa 系统的效率提高了一倍,异源天然产物代谢物的产量最多提高了 10 倍。这种策略有望应用于多种丝状真菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
期刊最新文献
Substitute Yeast Extract While Maintaining Performance: Showcase Amorpha-4,11-Diene Production Impact of fleQ Deficiency on Resource Allocation and Heterologous Gene Expression in Pseudomonas putida Across Various Growth Media Microalgae and cyanobacteria as microbial substrate and their influence on the potential postbiotic capability of a bacterial probiotic New insights for the development of efficient DNA vaccines Bacterial Catabolism of Phthalates With Estrogenic Activity Used as Plasticisers in the Manufacture of Plastic Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1