{"title":"Understanding Spin–Orbit-Coupling-Induced Reverse Intersystem Crossing in DMAC-TRZ-Doped Organic Light-Emitting Diodes via Magnetic-Field-Effect Measurement","authors":"Zhen Wang, Xiaoqun Jiang, Junyi Xiong, Bowen Xiao, Yongjie Wang, Xianju Zhou, Ruiheng Pan, Xiantong Tang","doi":"10.1021/acs.jpclett.4c02311","DOIUrl":null,"url":null,"abstract":"An efficient reverse intersystem crossing (RISC) process in thermally activated delayed fluorescence (TADF) material is a common way to obtain high-performance organic light-emitting diodes (OLEDs), but the physical mechanism for the spin flipping of the RISC remains vague. Here, using magneto-electroluminescence (MEL) as an effective tool, we found that the RISC (CT<sub>3</sub> → CT<sub>1</sub>) from a triplet charge transfer (CT<sub>3</sub>) to the singlet charge transfer (CT<sub>1</sub>) state is decided by spin–orbit coupling (SOC) in metal-free OLEDs based on a typical TADF emitter DMAC-TRZ. By fitting and analyzing the current and concentration-dependent MEL data, it is found that the characteristic magnetic field of the SOC-induced RISC process is approximately 65–85 mT, which is obviously larger than that (several mT) of the hyperfine-interaction-induced RISC process. Simultaneously, the dissociation effect of the electric field on the CT<sub>3</sub> state causes the SOC-induced RISC process to decrease with increasing bias current. The different formation methods of excited states lead to the nonmonotonic change of SOC-induced RISC process with the increase of dopant concentration. Furthermore, considering the orbital polarization of dipoles, the SOC mechanism is further verified by the measurement of magneto-photoluminescence to be the responsible for achieving the spin flipping in TADF molecules. Therefore, this work clarifies the underlying dynamic mechanism of the RISC process in TADF-OLEDs.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02311","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An efficient reverse intersystem crossing (RISC) process in thermally activated delayed fluorescence (TADF) material is a common way to obtain high-performance organic light-emitting diodes (OLEDs), but the physical mechanism for the spin flipping of the RISC remains vague. Here, using magneto-electroluminescence (MEL) as an effective tool, we found that the RISC (CT3 → CT1) from a triplet charge transfer (CT3) to the singlet charge transfer (CT1) state is decided by spin–orbit coupling (SOC) in metal-free OLEDs based on a typical TADF emitter DMAC-TRZ. By fitting and analyzing the current and concentration-dependent MEL data, it is found that the characteristic magnetic field of the SOC-induced RISC process is approximately 65–85 mT, which is obviously larger than that (several mT) of the hyperfine-interaction-induced RISC process. Simultaneously, the dissociation effect of the electric field on the CT3 state causes the SOC-induced RISC process to decrease with increasing bias current. The different formation methods of excited states lead to the nonmonotonic change of SOC-induced RISC process with the increase of dopant concentration. Furthermore, considering the orbital polarization of dipoles, the SOC mechanism is further verified by the measurement of magneto-photoluminescence to be the responsible for achieving the spin flipping in TADF molecules. Therefore, this work clarifies the underlying dynamic mechanism of the RISC process in TADF-OLEDs.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.