Superlattice cathodes endow cation and anion co-intercalation for high-energy-density aluminium batteries

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-09-16 DOI:10.1038/s41467-024-51570-9
Fangyan Cui, Jingzhen Li, Chen Lai, Changzhan Li, Chunhao Sun, Kai Du, Jinshu Wang, Hongyi Li, Aoming Huang, Shengjie Peng, Yuxiang Hu
{"title":"Superlattice cathodes endow cation and anion co-intercalation for high-energy-density aluminium batteries","authors":"Fangyan Cui, Jingzhen Li, Chen Lai, Changzhan Li, Chunhao Sun, Kai Du, Jinshu Wang, Hongyi Li, Aoming Huang, Shengjie Peng, Yuxiang Hu","doi":"10.1038/s41467-024-51570-9","DOIUrl":null,"url":null,"abstract":"<p>Conventionally, rocking-chair batteries capacity primarily depends on cation shuttling. However, intrinsically high-charge-density metal-ions, such as Al<sup>3+</sup>, inevitably cause strong Coulombic ion-lattice interactions, resulting in low practical energy density and inferior long-term stability towards rechargeable aluminium batteries (RABs). Herein, we introduce tunable quantum confinement effects and tailor a family of anion/cation co-(de)intercalation superlattice cathodes, achieving high-voltage anion charge compensation, with extra-capacity, in RABs. The optimized superlattice cathode with adjustable van der Waals not only enables facile traditional cation (de)intercalation, but also activates O<sup>2–</sup> compensation with an extra anion reaction. Furthermore, the constructed cathode delivers high energy-density (466 Wh kg<sup>–1</sup> at 107 W kg<sup>−1</sup>) and one of the best cycle stability (225 mAh g<sup>–1</sup> over 3000 cycles at 2.0 A g<sup>–1</sup>) in RABs. Overall, the anion-involving redox mechanism overcomes the bottlenecks of conventional electrodes, thereby heralding a promising advance in energy-storage-systems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-51570-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Conventionally, rocking-chair batteries capacity primarily depends on cation shuttling. However, intrinsically high-charge-density metal-ions, such as Al3+, inevitably cause strong Coulombic ion-lattice interactions, resulting in low practical energy density and inferior long-term stability towards rechargeable aluminium batteries (RABs). Herein, we introduce tunable quantum confinement effects and tailor a family of anion/cation co-(de)intercalation superlattice cathodes, achieving high-voltage anion charge compensation, with extra-capacity, in RABs. The optimized superlattice cathode with adjustable van der Waals not only enables facile traditional cation (de)intercalation, but also activates O2– compensation with an extra anion reaction. Furthermore, the constructed cathode delivers high energy-density (466 Wh kg–1 at 107 W kg−1) and one of the best cycle stability (225 mAh g–1 over 3000 cycles at 2.0 A g–1) in RABs. Overall, the anion-involving redox mechanism overcomes the bottlenecks of conventional electrodes, thereby heralding a promising advance in energy-storage-systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超晶格阴极赋予高能量密度铝电池阳离子和阴离子共电位
传统上,摇椅电池的容量主要取决于阳离子的穿梭。然而,Al3+ 等固有的高电荷密度金属离子不可避免地会引起强烈的库仑离子-晶格相互作用,从而导致实际能量密度低和可充电铝电池(RAB)的长期稳定性差。在此,我们引入了可调量子约束效应,并定制了一系列阴离子/阳离子共(脱)插超晶格阴极,从而在 RAB 中实现了具有额外容量的高电压阴离子电荷补偿。优化的超晶格阴极具有可调节的范德华,不仅能方便地实现传统的阳离子(去)插层,还能通过额外的阴离子反应激活 O2- 补偿。此外,所构建的阴极还具有高能量密度(466 Wh kg-1 ,107 W kg-1)和最佳循环稳定性(225 mAh g-1 ,3000 个循环,2.0 A g-1)。总之,阴离子参与氧化还原机制克服了传统电极的瓶颈,从而预示着储能系统有望取得进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
On the Author Correction to “Magnetic field screening in hydride superconductors” Ultrathin near-infrared transmitting films enabled by deprotonation-induced intramolecular charge transfer of a dopant β2 integrins impose a mechanical checkpoint on macrophage phagocytosis Asymmetric dihydroboration of allenes enabled by ligand relay catalysis Evidence for large-scale climate forcing of dense shelf water variability in the Ross Sea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1