Operando identification of the oxide path mechanism with different dual-active sites for acidic water oxidation

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-09-16 DOI:10.1038/s41467-024-52471-7
Qianqian Ji, Bing Tang, Xilin Zhang, Chao Wang, Hao Tan, Jie Zhao, Ruiqi Liu, Mei Sun, Hengjie Liu, Chang Jiang, Jianrong Zeng, Xingke Cai, Wensheng Yan
{"title":"Operando identification of the oxide path mechanism with different dual-active sites for acidic water oxidation","authors":"Qianqian Ji, Bing Tang, Xilin Zhang, Chao Wang, Hao Tan, Jie Zhao, Ruiqi Liu, Mei Sun, Hengjie Liu, Chang Jiang, Jianrong Zeng, Xingke Cai, Wensheng Yan","doi":"10.1038/s41467-024-52471-7","DOIUrl":null,"url":null,"abstract":"<p>The microscopic reaction pathway plays a crucial role in determining the electrochemical performance. However, artificially manipulating the reaction pathway still faces considerable challenges. In this study, we focus on the classical acidic water oxidation based on RuO<sub>2</sub> catalysts, which currently face the issues of low activity and poor stability. As a proof-of-concept, we propose a strategy to create local structural symmetry but oxidation-state asymmetric Mn<sup>4-δ</sup>-O-Ru<sup>4+δ</sup> active sites by introducing Mn atoms into RuO<sub>2</sub> host, thereby switching the reaction pathway from traditional adsorbate evolution mechanism to oxide path mechanism. Through advanced <i>operando</i> synchrotron spectroscopies and density functional theory calculations, we demonstrate the synergistic effect of dual-active metal sites in asymmetric Mn<sup>4-δ</sup>-O-Ru<sup>4+δ</sup> microstructure in optimizing the adsorption energy and rate-determining step barrier via an oxide path mechanism. This study highlights the importance of engineering reaction pathways and provides an alternative strategy for promoting acidic water oxidation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52471-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The microscopic reaction pathway plays a crucial role in determining the electrochemical performance. However, artificially manipulating the reaction pathway still faces considerable challenges. In this study, we focus on the classical acidic water oxidation based on RuO2 catalysts, which currently face the issues of low activity and poor stability. As a proof-of-concept, we propose a strategy to create local structural symmetry but oxidation-state asymmetric Mn4-δ-O-Ru4+δ active sites by introducing Mn atoms into RuO2 host, thereby switching the reaction pathway from traditional adsorbate evolution mechanism to oxide path mechanism. Through advanced operando synchrotron spectroscopies and density functional theory calculations, we demonstrate the synergistic effect of dual-active metal sites in asymmetric Mn4-δ-O-Ru4+δ microstructure in optimizing the adsorption energy and rate-determining step barrier via an oxide path mechanism. This study highlights the importance of engineering reaction pathways and provides an alternative strategy for promoting acidic water oxidation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用不同的双活性位点对酸性水氧化的氧化路径机制进行运算鉴定
微观反应途径在决定电化学性能方面起着至关重要的作用。然而,人为操纵反应途径仍然面临着相当大的挑战。在本研究中,我们重点研究了基于 RuO2 催化剂的经典酸性水氧化反应,这种催化剂目前面临着活性低和稳定性差的问题。作为概念验证,我们提出了一种策略,通过在 RuO2 宿主中引入锰原子,创建局部结构对称但氧化态不对称的 Mn4-δ-O-Ru4+δ 活性位点,从而将反应途径从传统的吸附剂演化机制转换为氧化物途径机制。通过先进的操作步骤同步辐射光谱和密度泛函理论计算,我们证明了不对称 Mn4-δ-O-Ru4+δ 微结构中的双活性金属位点在通过氧化物路径机制优化吸附能和速率决定阶跃势垒方面的协同效应。这项研究强调了工程反应路径的重要性,并为促进酸性水氧化提供了另一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
A comparative analysis of planarian genomes reveals regulatory conservation in the face of rapid structural divergence Local ionic transport enables selective PGM-free bipolar membrane electrode assembly Maintenance and transformation of representational formats during working memory prioritization Cohesive energy discrepancy drives the fabrication of multimetallic atomically dispersed materials for hydrogen evolution reaction Immune profiling-based targeting of pathogenic T cells with ustekinumab in ANCA-associated glomerulonephritis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1