Jiasen Zhang, Denghui Liu, Dr. Deli Li, Kexuan Sun, Dr. Wei Li, Yuanyuan Meng, Chang Liu, Yujie Wu, Kaibo Fang, Xilin Mu, Chunyu Liu, Shi-Jian Su, Prof. Ziyi Ge
{"title":"Enhancing Carrier Behavior via Controlled Molecular Film Formation Engineering Leads to Significant Improvement in Electroluminescence","authors":"Jiasen Zhang, Denghui Liu, Dr. Deli Li, Kexuan Sun, Dr. Wei Li, Yuanyuan Meng, Chang Liu, Yujie Wu, Kaibo Fang, Xilin Mu, Chunyu Liu, Shi-Jian Su, Prof. Ziyi Ge","doi":"10.1002/anie.202415856","DOIUrl":null,"url":null,"abstract":"<p>The quality of organic thin films critically influences carrier dynamics in organic semiconductors. In neat/doped films, even tiny voids can be penetrated by water or oxygen molecules to create charge-trap states called water/oxygen-induced traps that significantly hinder carrier mobility. While the water/oxygen-induced traps in non-doped films and crystalline states have been investigated comprehensively, there is a lack of thorough examination regarding their properties in the doped state. Therefore, there is a high demand for a molecular design strategy that effectively modulates the molecular stacking behavior in doped films and practical devices and enhances the quality of these films. Herein, we proposed a versatile molecular design principle that enables the formation of “nano-cluster” structures on both the surface and interior of doped films in target molecule 10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-1′-(4-fluorophenyl)-10<i>H</i>-spiro[acridine-9,9′-xanthene] (<b>DspiroO-F-TRZ</b>), which is modified with a <i>fluorophenyl</i> group. These “nano-cluster” structures exhibit more uniform shapes within doped films and effectively reduce defective state densities while enhancing carrier injection and transport properties, ultimately improving device performance. Notably, TADF-OLED based on <b>DspiroO-F-TRZ</b> demonstrates nearly twice as much efficiency as its control counterpart due to contributions from ′nano-cluster′ structure enhancements toward improved electroluminescence performance.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 4","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202415856","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The quality of organic thin films critically influences carrier dynamics in organic semiconductors. In neat/doped films, even tiny voids can be penetrated by water or oxygen molecules to create charge-trap states called water/oxygen-induced traps that significantly hinder carrier mobility. While the water/oxygen-induced traps in non-doped films and crystalline states have been investigated comprehensively, there is a lack of thorough examination regarding their properties in the doped state. Therefore, there is a high demand for a molecular design strategy that effectively modulates the molecular stacking behavior in doped films and practical devices and enhances the quality of these films. Herein, we proposed a versatile molecular design principle that enables the formation of “nano-cluster” structures on both the surface and interior of doped films in target molecule 10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-1′-(4-fluorophenyl)-10H-spiro[acridine-9,9′-xanthene] (DspiroO-F-TRZ), which is modified with a fluorophenyl group. These “nano-cluster” structures exhibit more uniform shapes within doped films and effectively reduce defective state densities while enhancing carrier injection and transport properties, ultimately improving device performance. Notably, TADF-OLED based on DspiroO-F-TRZ demonstrates nearly twice as much efficiency as its control counterpart due to contributions from ′nano-cluster′ structure enhancements toward improved electroluminescence performance.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.