{"title":"Application of a polynomial sieve: beyond separation of variables","authors":"Dante Bonolis, Lillian B. Pierce","doi":"10.2140/ant.2024.18.1515","DOIUrl":null,"url":null,"abstract":"<p>Let a polynomial <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi>\n<mo>∈</mo>\n<mi>ℤ</mi><mo stretchy=\"false\">[</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>…</mi><mo> <!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">]</mo></math> be given. The square sieve can provide an upper bound for the number of integral <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle>\n<mo>∈</mo> <msup><mrow><mo stretchy=\"false\">[</mo><mo>−</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo stretchy=\"false\">]</mo></mrow><mrow><mi>n</mi></mrow></msup></math> such that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo stretchy=\"false\">(</mo><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo></math> is a perfect square. Recently this has been generalized substantially: first to a power sieve, counting <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle>\n<mo>∈</mo> <msup><mrow><mo stretchy=\"false\">[</mo><mo>−</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo stretchy=\"false\">]</mo></mrow><mrow><mi>n</mi></mrow></msup></math> for which <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo stretchy=\"false\">(</mo><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <msup><mrow><mi>y</mi></mrow><mrow><mi>r</mi></mrow></msup></math> is solvable for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>y</mi>\n<mo>∈</mo>\n<mi>ℤ</mi></math>; then to a polynomial sieve, counting <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle>\n<mo>∈</mo> <msup><mrow><mo stretchy=\"false\">[</mo><mo>−</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo stretchy=\"false\">]</mo></mrow><mrow><mi>n</mi></mrow></msup></math> for which <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo stretchy=\"false\">(</mo><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo>\n<mo>=</mo>\n<mi>g</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo stretchy=\"false\">)</mo></math> is solvable, for a given polynomial <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi></math>. Formally, a polynomial sieve lemma can encompass the more general problem of counting <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle>\n<mo>∈</mo> <msup><mrow><mo stretchy=\"false\">[</mo><mo>−</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo stretchy=\"false\">]</mo></mrow><mrow><mi>n</mi></mrow></msup></math> for which <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo>,</mo><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <mn>0</mn></math> is solvable, for a given polynomial <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math>. Previous applications, however, have only succeeded in the case that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo>,</mo><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo></math> exhibits separation of variables, that is, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo>,</mo><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo></math> takes the form <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo stretchy=\"false\">(</mo><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo>\n<mo>−</mo>\n<mi>g</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo stretchy=\"false\">)</mo></math>. In the present work, we present the first application of a polynomial sieve to count <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle>\n<mo>∈</mo> <msup><mrow><mo stretchy=\"false\">[</mo><mo>−</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo stretchy=\"false\">]</mo></mrow><mrow><mi>n</mi></mrow></msup></math> such that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo>,</mo><mstyle mathvariant=\"bold-italic\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <mn>0</mn></math> is solvable, in a case for which <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math> does not exhibit separation of variables. Consequently, we obtain a new result toward a question of Serre, pertaining to counting points in thin sets. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"12 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1515","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let a polynomial be given. The square sieve can provide an upper bound for the number of integral such that is a perfect square. Recently this has been generalized substantially: first to a power sieve, counting for which is solvable for ; then to a polynomial sieve, counting for which is solvable, for a given polynomial . Formally, a polynomial sieve lemma can encompass the more general problem of counting for which is solvable, for a given polynomial . Previous applications, however, have only succeeded in the case that exhibits separation of variables, that is, takes the form . In the present work, we present the first application of a polynomial sieve to count such that is solvable, in a case for which does not exhibit separation of variables. Consequently, we obtain a new result toward a question of Serre, pertaining to counting points in thin sets.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.