Immunomagnetic particles exhibiting programmable hierarchical flower-like nanostructure for enhanced separation of tumor cells

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-09-18 DOI:10.1039/d4nr02929a
Na He, Han Bao, Jingxin Meng, Yongyang Song, Li-Ping Xu, Shutao Wang
{"title":"Immunomagnetic particles exhibiting programmable hierarchical flower-like nanostructure for enhanced separation of tumor cells","authors":"Na He, Han Bao, Jingxin Meng, Yongyang Song, Li-Ping Xu, Shutao Wang","doi":"10.1039/d4nr02929a","DOIUrl":null,"url":null,"abstract":"Immunomagnetic particles are extensively used for the separation of biological molecules and particles, and have exhibited great potential in many fields including biosensors, disease diagnosis and biomedical engineering. However, most immunomagnetic particles exhibit a smooth surface, resulting in a limited separation efficiency for biological particles featuring enormous surface nanostructures, such as tumor cells. Here we report the flower-like immunomagnetic particles (FIMPs), prepared by streptavidin (SA)-assisted biomineralization and one-step antibody modification, and demonstrate their superior capability for highly efficient and selective separation of circulating tumor cells (CTCs). SA can link inorganic nanosheets and magnetic nanoparticles together to obtain FIMPs with programmable hierarchical flower-like nanostructures and provide enormous binding sites for post-antibody modification. The synergetic effect of nanosized petals and micro-sized particles in the hierarchical nanostructure enhances the interaction between cells and matrix, thus enabling FIMPs to separate CTCs with high selectivity and high efficiency. Our study provides a promising platform for the selective separation and isolation of trace biological molecules and particles from complex samples and shows great potential for downstream detection and diagnosis.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr02929a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Immunomagnetic particles are extensively used for the separation of biological molecules and particles, and have exhibited great potential in many fields including biosensors, disease diagnosis and biomedical engineering. However, most immunomagnetic particles exhibit a smooth surface, resulting in a limited separation efficiency for biological particles featuring enormous surface nanostructures, such as tumor cells. Here we report the flower-like immunomagnetic particles (FIMPs), prepared by streptavidin (SA)-assisted biomineralization and one-step antibody modification, and demonstrate their superior capability for highly efficient and selective separation of circulating tumor cells (CTCs). SA can link inorganic nanosheets and magnetic nanoparticles together to obtain FIMPs with programmable hierarchical flower-like nanostructures and provide enormous binding sites for post-antibody modification. The synergetic effect of nanosized petals and micro-sized particles in the hierarchical nanostructure enhances the interaction between cells and matrix, thus enabling FIMPs to separate CTCs with high selectivity and high efficiency. Our study provides a promising platform for the selective separation and isolation of trace biological molecules and particles from complex samples and shows great potential for downstream detection and diagnosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
呈现可编程分层花朵状纳米结构的免疫磁性微粒可提高肿瘤细胞的分离能力
免疫磁性微粒被广泛用于分离生物分子和微粒,在生物传感器、疾病诊断和生物医学工程等许多领域展现出巨大潜力。然而,大多数免疫磁性粒子表面光滑,因此对于具有巨大表面纳米结构的生物粒子(如肿瘤细胞)的分离效率有限。在此,我们报告了通过链霉亲和素(SA)辅助生物矿化和一步抗体修饰制备的花状免疫磁性微粒(FIMPs),并展示了其高效、选择性分离循环肿瘤细胞(CTCs)的卓越能力。SA 可以将无机纳米片和磁性纳米颗粒连接在一起,从而获得具有可编程分层花朵状纳米结构的 FIMPs,并为抗体修饰后提供巨大的结合位点。分层纳米结构中的纳米花瓣和微粒的协同效应增强了细胞与基质之间的相互作用,从而使 FIMPs 能够高选择性、高效率地分离 CTC。我们的研究为从复杂样品中选择性分离痕量生物分子和微粒提供了一个前景广阔的平台,并为下游检测和诊断展示了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
Fabrication of flower-like CoFe/C composites derived from ferrocene-based metal–organic frameworks: an in situ growth strategy toward high-efficiency electromagnetic wave absorption Engineering multi-component 3DOM FeVCrOx catalysts with high oxygen mobility for the oxidative dehydrogenation of 1-butene with CO2 Design of “Green” Plasmonic Nanocomposites with Multi-Band Blue Emission for Ultrafast Laser Hyperthermia Design of Multi-responsive and Actuating Microgel toward On-demand Drug Release Immunomagnetic particles exhibiting programmable hierarchical flower-like nanostructure for enhanced separation of tumor cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1