Dynamic Surface Intelligent Robust Control of Nonlinear Systems With Fixed-Time Sliding-Mode Observer

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Cybernetics Pub Date : 2024-09-17 DOI:10.1109/TCYB.2024.3456089
Hong-Gui Han;Cheng-Cheng Feng;Hao-Yuan Sun;Jun-Fei Qiao
{"title":"Dynamic Surface Intelligent Robust Control of Nonlinear Systems With Fixed-Time Sliding-Mode Observer","authors":"Hong-Gui Han;Cheng-Cheng Feng;Hao-Yuan Sun;Jun-Fei Qiao","doi":"10.1109/TCYB.2024.3456089","DOIUrl":null,"url":null,"abstract":"The high tracking control precision and fast finite-time convergence for nonlinear systems is a significant challenge due to complex nonlinearity and unknown disturbances. To address this challenge, a dynamic surface intelligent robust control strategy with fixed-time sliding-mode observer (DSIRC-SMO) is proposed to improve the tracking control performance in a finite time. First, adaptive fuzzy neural network based on a predictor (P-AFNN) is designed to imitate the complex nonlinearity. In particular, the weight adaptive law is formulated by utilizing the prediction error information, which improves the accuracy of approximating the nonlinear system. Second, the fixed-time sliding-mode observer (SMO) is integrated into the dynamic surface control technique to deal with unknown disturbances and modeling errors in a fixed time. This integration allows for timely updates the dynamic surface using observation information, thereby enhancing the system’s anti-interference capability. Then, the fixed-time convergence of SMO is proven. Third, the proposed DSIRC-SMO can be effectively implemented and the finite-time convergence of DSIRC-SMO is proven in detail based on the fixed-time convergence of SMO. Finally, numerical simulation and actual wastewater treatment processes simulation are conducted to validate the effectiveness of DSIRC-SMO.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"54 11","pages":"6767-6779"},"PeriodicalIF":9.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10681484/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The high tracking control precision and fast finite-time convergence for nonlinear systems is a significant challenge due to complex nonlinearity and unknown disturbances. To address this challenge, a dynamic surface intelligent robust control strategy with fixed-time sliding-mode observer (DSIRC-SMO) is proposed to improve the tracking control performance in a finite time. First, adaptive fuzzy neural network based on a predictor (P-AFNN) is designed to imitate the complex nonlinearity. In particular, the weight adaptive law is formulated by utilizing the prediction error information, which improves the accuracy of approximating the nonlinear system. Second, the fixed-time sliding-mode observer (SMO) is integrated into the dynamic surface control technique to deal with unknown disturbances and modeling errors in a fixed time. This integration allows for timely updates the dynamic surface using observation information, thereby enhancing the system’s anti-interference capability. Then, the fixed-time convergence of SMO is proven. Third, the proposed DSIRC-SMO can be effectively implemented and the finite-time convergence of DSIRC-SMO is proven in detail based on the fixed-time convergence of SMO. Finally, numerical simulation and actual wastewater treatment processes simulation are conducted to validate the effectiveness of DSIRC-SMO.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带固定时间滑模观测器的非线性系统动态表面智能鲁棒控制
由于复杂的非线性和未知的干扰,非线性系统的高跟踪控制精度和快速有限时间收敛是一个重大挑战。为应对这一挑战,本文提出了一种带有固定时间滑模观测器(DSIRC-SMO)的动态表面智能鲁棒控制策略,以提高有限时间内的跟踪控制性能。首先,设计了基于预测器的自适应模糊神经网络(P-AFNN)来模仿复杂的非线性。其中,利用预测误差信息制定了权重自适应法则,从而提高了近似非线性系统的精度。其次,将固定时间滑动模式观测器(SMO)集成到动态表面控制技术中,以便在固定时间内处理未知干扰和建模误差。这种集成可以利用观测信息及时更新动态曲面,从而增强系统的抗干扰能力。然后,证明了 SMO 的固定时间收敛性。第三,基于 SMO 的固定时间收敛性,可以有效地实现所提出的 DSIRC-SMO,并详细证明了 DSIRC-SMO 的有限时间收敛性。最后,通过数值模拟和实际污水处理过程模拟来验证 DSIRC-SMO 的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
期刊最新文献
Visual-Inertial-Acoustic Sensor Fusion for Accurate Autonomous Localization of Underwater Vehicles Aeroengine Bearing Time-Varying Skidding Assessment With Prior Knowledge-Embedded Dual Feedback Spatial-Temporal GCN Interval Secure Event-Triggered Mechanism for Load Frequency Control Active Defense Against DoS Attack Bayesian Transfer Filtering Using Pseudo Marginal Measurement Likelihood Granular Computing for Machine Learning: Pursuing New Development Horizons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1