OOD-CV-v2 : An Extended Benchmark for Robustness to Out-of-Distribution Shifts of Individual Nuisances in Natural Images

Bingchen Zhao;Jiahao Wang;Wufei Ma;Artur Jesslen;Siwei Yang;Shaozuo Yu;Oliver Zendel;Christian Theobalt;Alan L. Yuille;Adam Kortylewski
{"title":"OOD-CV-v2 : An Extended Benchmark for Robustness to Out-of-Distribution Shifts of Individual Nuisances in Natural Images","authors":"Bingchen Zhao;Jiahao Wang;Wufei Ma;Artur Jesslen;Siwei Yang;Shaozuo Yu;Oliver Zendel;Christian Theobalt;Alan L. Yuille;Adam Kortylewski","doi":"10.1109/TPAMI.2024.3462293","DOIUrl":null,"url":null,"abstract":"Enhancing the robustness of vision algorithms in real-world scenarios is challenging. One reason is that existing robustness benchmarks are limited, as they either rely on synthetic data or ignore the effects of individual nuisance factors. We introduce OOD-CV-v2, a benchmark dataset that includes out-of-distribution examples of 10 object categories in terms of pose, shape, texture, context and the weather conditions, and enables benchmarking of models for image classification, object detection, and 3D pose estimation. In addition to this novel dataset, we contribute extensive experiments using popular baseline methods, which reveal that: 1) Some nuisance factors have a much stronger negative effect on the performance compared to others, also depending on the vision task. 2) Current approaches to enhance robustness have only marginal effects, and can even reduce robustness. 3) We do not observe significant differences between convolutional and transformer architectures. We believe our dataset provides a rich test bed to study robustness and will help push forward research in this area.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"46 12","pages":"11104-11118"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10682066/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing the robustness of vision algorithms in real-world scenarios is challenging. One reason is that existing robustness benchmarks are limited, as they either rely on synthetic data or ignore the effects of individual nuisance factors. We introduce OOD-CV-v2, a benchmark dataset that includes out-of-distribution examples of 10 object categories in terms of pose, shape, texture, context and the weather conditions, and enables benchmarking of models for image classification, object detection, and 3D pose estimation. In addition to this novel dataset, we contribute extensive experiments using popular baseline methods, which reveal that: 1) Some nuisance factors have a much stronger negative effect on the performance compared to others, also depending on the vision task. 2) Current approaches to enhance robustness have only marginal effects, and can even reduce robustness. 3) We do not observe significant differences between convolutional and transformer architectures. We believe our dataset provides a rich test bed to study robustness and will help push forward research in this area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OOD-CV-v2:自然图像中单个干扰的分布外偏移鲁棒性扩展基准
提高视觉算法在真实世界场景中的鲁棒性具有挑战性。原因之一是现有的鲁棒性基准有限,因为它们要么依赖于合成数据,要么忽略了个别干扰因素的影响。我们引入了 OOD-CV-v2,这是一个基准数据集,其中包括 10 个物体类别在姿态、形状、纹理、上下文和天气条件方面的分布外示例,可以对图像分类、物体检测和三维姿态估计模型进行基准测试。除了这个新颖的数据集之外,我们还使用流行的基线方法进行了大量实验,结果表明1) 与其他方法相比,某些干扰因素对性能的负面影响更大,这也取决于视觉任务。2) 目前增强鲁棒性的方法效果甚微,甚至会降低鲁棒性。3) 我们没有观察到卷积架构和变压器架构之间的显著差异。我们相信,我们的数据集为研究鲁棒性提供了丰富的测试平台,并将有助于推动该领域的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Language-Inspired Relation Transfer for Few-Shot Class-Incremental Learning. Multi-Modality Multi-Attribute Contrastive Pre-Training for Image Aesthetics Computing. 360SFUDA++: Towards Source-Free UDA for Panoramic Segmentation by Learning Reliable Category Prototypes. Anti-Forgetting Adaptation for Unsupervised Person Re-Identification. Evolved Hierarchical Masking for Self-Supervised Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1