Integrative residue-intuitive machine learning and MD Approach to Unveil Allosteric Site and Mechanism for β2AR

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-09-16 DOI:10.1038/s41467-024-52399-y
Xin Chen, Kexin Wang, Jianfang Chen, Chao Wu, Jun Mao, Yuanpeng Song, Yijing Liu, Zhenhua Shao, Xuemei Pu
{"title":"Integrative residue-intuitive machine learning and MD Approach to Unveil Allosteric Site and Mechanism for β2AR","authors":"Xin Chen, Kexin Wang, Jianfang Chen, Chao Wu, Jun Mao, Yuanpeng Song, Yijing Liu, Zhenhua Shao, Xuemei Pu","doi":"10.1038/s41467-024-52399-y","DOIUrl":null,"url":null,"abstract":"<p>Allosteric drugs offer a new avenue for modern drug design. However, the identification of cryptic allosteric sites presents a formidable challenge. Following the allostery nature of residue-driven conformation transition, we propose a state-of-the-art computational pipeline by developing a residue-intuitive hybrid machine learning (RHML) model coupled with molecular dynamics (MD) simulation, through which we can efficiently identify the allosteric site and allosteric modulator as well as reveal their regulation mechanism. For the clinical target β2-adrenoceptor (β2AR), we discover an additional allosteric site located around residues D79<sup>2.50</sup>, F282<sup>6.44</sup>, N318<sup>7.45</sup> and S319<sup>7.46</sup> and one putative allosteric modulator ZINC5042. Using Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and protein structure network (PSN), the allosteric potency and regulation mechanism are probed to further improve identification accuracy. Benefiting from sufficient computational evidence, the experimental assays then validate our predicted allosteric site, negative allosteric potency and regulation pathway, showcasing the effectiveness of the identification pipeline in practice. We expect that it will be applicable to other target proteins.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52399-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Allosteric drugs offer a new avenue for modern drug design. However, the identification of cryptic allosteric sites presents a formidable challenge. Following the allostery nature of residue-driven conformation transition, we propose a state-of-the-art computational pipeline by developing a residue-intuitive hybrid machine learning (RHML) model coupled with molecular dynamics (MD) simulation, through which we can efficiently identify the allosteric site and allosteric modulator as well as reveal their regulation mechanism. For the clinical target β2-adrenoceptor (β2AR), we discover an additional allosteric site located around residues D792.50, F2826.44, N3187.45 and S3197.46 and one putative allosteric modulator ZINC5042. Using Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and protein structure network (PSN), the allosteric potency and regulation mechanism are probed to further improve identification accuracy. Benefiting from sufficient computational evidence, the experimental assays then validate our predicted allosteric site, negative allosteric potency and regulation pathway, showcasing the effectiveness of the identification pipeline in practice. We expect that it will be applicable to other target proteins.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合残基直觉机器学习和 MD 方法,揭示 β2AR 的异构位点和机制
异构药物为现代药物设计提供了一条新途径。然而,识别隐蔽的异构位点是一项艰巨的挑战。根据残基驱动构象转换的异构性质,我们提出了一种最先进的计算管道,通过建立残基直观混合机器学习(RHML)模型并结合分子动力学(MD)模拟,我们可以高效地识别异构位点和异构调节剂,并揭示其调控机制。对于临床靶标 β2-肾上腺素受体(β2AR),我们发现了位于残基 D792.50、F2826.44、N3187.45 和 S3197.46 附近的一个额外的异位位点和一个推定的异位调节剂 ZINC5042。利用分子机理/广义博恩表面积(MM/GBSA)和蛋白质结构网络(PSN),对其异生效力和调控机制进行了探究,从而进一步提高了鉴定的准确性。得益于充分的计算证据,实验检测随后验证了我们预测的异生作用位点、负异生作用效力和调控途径,展示了鉴定管道在实践中的有效性。我们希望它能适用于其他目标蛋白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Author Correction: Palmitoylation of ULK1 by ZDHHC13 plays a crucial role in autophagy Metamaterials with negative compressibility highlight evolving interpretations and opportunities Lack of SMARCB1 expression characterizes a subset of human and murine peripheral T-cell lymphomas Developmental assembly of multi-component polymer systems through interconnected synthetic gene networks in vitro Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1