Nitrogen-doped carbon coated zinc selenide nanoparticles derived from metal–organic frameworks as high-rate and long-life anode materials for half/full sodium-ion batteries†

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2024-09-18 DOI:10.1039/D4QI01928H
Yunxiu Wang, Yilin Wang, Zenghui Cai, Zhijiang Yu, Hao Dong, Yifan Zhang, Yanli Zhou, Xintao Zhang, Yanjun Zhai, Fuyi Jiang and Caifu Dong
{"title":"Nitrogen-doped carbon coated zinc selenide nanoparticles derived from metal–organic frameworks as high-rate and long-life anode materials for half/full sodium-ion batteries†","authors":"Yunxiu Wang, Yilin Wang, Zenghui Cai, Zhijiang Yu, Hao Dong, Yifan Zhang, Yanli Zhou, Xintao Zhang, Yanjun Zhai, Fuyi Jiang and Caifu Dong","doi":"10.1039/D4QI01928H","DOIUrl":null,"url":null,"abstract":"<p >To address the slow reaction kinetics and poor cycling stability of ZnSe during sodium storage, in this study, the two-dimensional network structure [Zn(L<small><sub>3</sub></small>)·H<small><sub>2</sub></small>O]<small><sub><em>n</em></sub></small> (ZnL, L = 5-aminoisophthalic acid) was firstly successfully prepared by a simple solvothermal reaction. Then, nitrogen-doped carbon coated ZnSe nanoparticle composites (denoted as ZnSe@NC) were obtained by selenization of ZnL. Benefiting from the synergistic effect of ZnSe nanoparticles and NC, ZnSe@NC demonstrated ultra-long cycling stability (a capacity decay rate of only 0.052% per cycle) and high rate performance (400.6/311.1 mA h g<small><sup>−1</sup></small> at 0.1/10 A g<small><sup>−1</sup></small>). The excellent electrochemical properties of ZnSe@NC can be attributed to high pseudocapacitance contribution, low charge transfer impedance, and high ion diffusion coefficient. In addition, <em>ex situ</em> XRD, XPS, and HRTEM analyses revealed that the sodium storage process of ZnSe@NC is a conversion reaction followed by an alloying reaction. More importantly, the sodium-ion full battery Na<small><sub>3</sub></small>V<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small>@rGO//ZnSe@NC can maintain a reversible capacity of 216.4 mA h g<small><sup>−1</sup></small> after 100 cycles at 0.3 A g<small><sup>−1</sup></small>. This approach provides a promising method for the design of MOF-derived metal selenide materials for energy storage and conversion.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01928h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

To address the slow reaction kinetics and poor cycling stability of ZnSe during sodium storage, in this study, the two-dimensional network structure [Zn(L3)·H2O]n (ZnL, L = 5-aminoisophthalic acid) was firstly successfully prepared by a simple solvothermal reaction. Then, nitrogen-doped carbon coated ZnSe nanoparticle composites (denoted as ZnSe@NC) were obtained by selenization of ZnL. Benefiting from the synergistic effect of ZnSe nanoparticles and NC, ZnSe@NC demonstrated ultra-long cycling stability (a capacity decay rate of only 0.052% per cycle) and high rate performance (400.6/311.1 mA h g−1 at 0.1/10 A g−1). The excellent electrochemical properties of ZnSe@NC can be attributed to high pseudocapacitance contribution, low charge transfer impedance, and high ion diffusion coefficient. In addition, ex situ XRD, XPS, and HRTEM analyses revealed that the sodium storage process of ZnSe@NC is a conversion reaction followed by an alloying reaction. More importantly, the sodium-ion full battery Na3V2(PO4)3@rGO//ZnSe@NC can maintain a reversible capacity of 216.4 mA h g−1 after 100 cycles at 0.3 A g−1. This approach provides a promising method for the design of MOF-derived metal selenide materials for energy storage and conversion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
源自金属有机框架的氮掺杂碳涂层硒化锌纳米粒子作为半/全钠离子电池的高倍率和长寿命负极材料
为了解决硒化锌在钠储存过程中反应动力学慢、循环稳定性差的问题。本研究首先通过简单的溶热反应成功制备了二维网络结构[Zn(L3)-H2O]n(ZnL,L=5-氨基间苯二甲酸)。然后,通过对 ZnL 进行盐析,得到了氮掺杂碳包覆 ZnSe 纳米粒子复合材料(简称 ZnSe@NC)。得益于 ZnSe 纳米粒子和 NC 的协同作用,ZnSe@NC 表现出超长循环稳定性(每个循环的容量衰减率仅为 0.052%)和高倍率性能(在 0.1/10 A g-1 条件下为 400.6/311.1 mAh g-1)。ZnSe@NC 的优异电化学性能可归因于高假电容贡献、低电荷转移阻抗和高离子扩散系数。此外,原位 XRD、XPS 和 HRTEM 分析表明,ZnSe@NC 的钠存储过程是一个转化反应,然后是合金化反应。更重要的是,钠离子全电池 Na3V2(PO4)3@rGO//ZnSe@NC 在 0.3 A g-1 的条件下循环 100 次后,可保持 216.4 mAh g-1 的可逆容量。这种方法为设计用于能量存储和转换的 MOFs 衍生金属硒化物材料提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
Hierarchical FeCo LDH/NiSe heterostructure electrocatalysts with rich heterointerfaces for robust water splitting at industrial-level current density Ultrathin 2D NiCo-MOF bimetallic nanosheets as single-atom catalysts for chemoselective hydrogenation of nitroarenes Naphthalene diimide-based crystalline hybrid photochromic materials: Structural types, photochromic mechanism, and applications Ionic-liquid/metal-organic-framework composites: Synthesis and emerging sustainable applications Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1