Synergism between metal single-atom sites and S-vacant two-dimensional nanosheets for efficient hydrogen evolution uncovered by density functional theory and machine learning†

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2024-09-18 DOI:10.1039/D4QI01723D
Xinyi Li, Dongxu Jiao, Jingxiang Zhao and Xiao Zhao
{"title":"Synergism between metal single-atom sites and S-vacant two-dimensional nanosheets for efficient hydrogen evolution uncovered by density functional theory and machine learning†","authors":"Xinyi Li, Dongxu Jiao, Jingxiang Zhao and Xiao Zhao","doi":"10.1039/D4QI01723D","DOIUrl":null,"url":null,"abstract":"<p >Efficient electrocatalysts for the hydrogen evolution reaction (HER) are the key to hydrogen-electricity energy conversion. Leveraging density functional theory and machine learning, we herein reveal the synergism between metal single atoms (M-SAs) and S-vacant two-dimensional (2D) MnPS<small><sub>3</sub></small> nanosheets (S<small><sub>v</sub></small>-MnPS<small><sub>3</sub></small>). Specifically, M-SAs occupy S-vacancies and activate the neighboring S sites as new active sites for the HER. In turn, S<small><sub>v</sub></small>-MnPS<small><sub>3</sub></small> improves the ability of metal-SAs for water dissociation by modulating their magnetic moments. During the HER, H* is generated on metal-SAs and then migrates to neighboring S sites on which H<small><sub>2</sub></small> is produced, representing catalytic synergism <em>via</em> hydrogen spillover. Among the M<small><sub>1</sub></small>/S<small><sub>v</sub></small>-MnPS<small><sub>3</sub></small> candidates, Pd<small><sub>1</sub></small>/S<small><sub>v</sub></small>-MnPS<small><sub>3</sub></small> possesses an optimal Δ<em>G</em><small><sub>H*</sub></small> of 0.01 eV and is both thermodynamically and electrochemically stable. Therefore, the synergism between Pd<small><sub>1</sub></small> and S<small><sub>v</sub></small>-MnPS<small><sub>3</sub></small> enables Pd<small><sub>1</sub></small>/S<small><sub>v</sub></small>-MnPS<small><sub>3</sub></small> to be active and durable for the HER. This work provides insights into how to design and understand confined metal-SAs in 2D materials for efficient electrocatalysis.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 20","pages":" 7008-7017"},"PeriodicalIF":6.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01723d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient electrocatalysts for the hydrogen evolution reaction (HER) are the key to hydrogen-electricity energy conversion. Leveraging density functional theory and machine learning, we herein reveal the synergism between metal single atoms (M-SAs) and S-vacant two-dimensional (2D) MnPS3 nanosheets (Sv-MnPS3). Specifically, M-SAs occupy S-vacancies and activate the neighboring S sites as new active sites for the HER. In turn, Sv-MnPS3 improves the ability of metal-SAs for water dissociation by modulating their magnetic moments. During the HER, H* is generated on metal-SAs and then migrates to neighboring S sites on which H2 is produced, representing catalytic synergism via hydrogen spillover. Among the M1/Sv-MnPS3 candidates, Pd1/Sv-MnPS3 possesses an optimal ΔGH* of 0.01 eV and is both thermodynamically and electrochemically stable. Therefore, the synergism between Pd1 and Sv-MnPS3 enables Pd1/Sv-MnPS3 to be active and durable for the HER. This work provides insights into how to design and understand confined metal-SAs in 2D materials for efficient electrocatalysis.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
密度泛函理论和机器学习揭示金属单原子位点与 S-空隙二维纳米片在高效氢进化中的协同作用
氢进化反应(HER)的高效电催化剂是氢-电能量转换的关键。利用密度泛函理论和机器学习,我们在此揭示了金属单原子(M-SAs)与S空位二维(2D)MnPS3纳米片(Sv-MnPS3)之间的协同作用。具体来说,M-SAs 占据 S 空位并激活邻近的 S 位点,使其成为 HER 的新活性位点。反过来,Sv-MnPS3 通过调节金属-砷的磁矩,提高了金属-砷解离水的能力。在氢化还原过程中,H*在金属-砷上生成,然后迁移到邻近的 S 位点,在这些位点上生成 H2,这就是氢溢出的催化协同作用。在 M1/Sv-MnPS3 候选化合物中,Pd1/Sv-MnPS3 具有 0.01 eV 的最佳 ΔGH* 值,并且在热力学和电化学方面都很稳定。因此,Pd1 和 Sv-MnPS3 之间的协同作用使 Pd1/Sv-MnPS3 对 HER 具有活性和持久性。这项工作为如何设计和理解二维材料中的封闭金属-SAs以实现高效电催化提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
Size-Dependent Electronic Structure of Titanium-Oxo-Alkoxides: Exploring Quantum Confinement at the Smallest Sizes Negative Thermal Quenching One-dimensional Copper(I)-Iodide Coordination Polymer Scintillator: Enabling High-Resolution X-Ray Imaging Immobilization of metals on carbon nanotubes through non-covalent approaches - Focus on the use of polymerized lipidic interfaces to prepare catalytic hybrids Cu³⁺/Ni³⁺ Dual Active Sites for High-Voltage Driven Electrocatalytic Production of 2,5-Furanedicarboxylic acid Luminescence tuning in a zero-dimensional organic–inorganic hybrid metal halide family of (C7H18N2)MBr4 (M = Cd, Zn, and Mn)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1