Synergism between metal single-atom sites and S-vacant two-dimensional nanosheets for efficient hydrogen evolution uncovered by density functional theory and machine learning†

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-09-18 DOI:10.1039/D4QI01723D
Xinyi Li, Dongxu Jiao, Jingxiang Zhao and Xiao Zhao
{"title":"Synergism between metal single-atom sites and S-vacant two-dimensional nanosheets for efficient hydrogen evolution uncovered by density functional theory and machine learning†","authors":"Xinyi Li, Dongxu Jiao, Jingxiang Zhao and Xiao Zhao","doi":"10.1039/D4QI01723D","DOIUrl":null,"url":null,"abstract":"<p >Efficient electrocatalysts for the hydrogen evolution reaction (HER) are the key to hydrogen-electricity energy conversion. Leveraging density functional theory and machine learning, we herein reveal the synergism between metal single atoms (M-SAs) and S-vacant two-dimensional (2D) MnPS<small><sub>3</sub></small> nanosheets (S<small><sub>v</sub></small>-MnPS<small><sub>3</sub></small>). Specifically, M-SAs occupy S-vacancies and activate the neighboring S sites as new active sites for the HER. In turn, S<small><sub>v</sub></small>-MnPS<small><sub>3</sub></small> improves the ability of metal-SAs for water dissociation by modulating their magnetic moments. During the HER, H* is generated on metal-SAs and then migrates to neighboring S sites on which H<small><sub>2</sub></small> is produced, representing catalytic synergism <em>via</em> hydrogen spillover. Among the M<small><sub>1</sub></small>/S<small><sub>v</sub></small>-MnPS<small><sub>3</sub></small> candidates, Pd<small><sub>1</sub></small>/S<small><sub>v</sub></small>-MnPS<small><sub>3</sub></small> possesses an optimal Δ<em>G</em><small><sub>H*</sub></small> of 0.01 eV and is both thermodynamically and electrochemically stable. Therefore, the synergism between Pd<small><sub>1</sub></small> and S<small><sub>v</sub></small>-MnPS<small><sub>3</sub></small> enables Pd<small><sub>1</sub></small>/S<small><sub>v</sub></small>-MnPS<small><sub>3</sub></small> to be active and durable for the HER. This work provides insights into how to design and understand confined metal-SAs in 2D materials for efficient electrocatalysis.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01723d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient electrocatalysts for the hydrogen evolution reaction (HER) are the key to hydrogen-electricity energy conversion. Leveraging density functional theory and machine learning, we herein reveal the synergism between metal single atoms (M-SAs) and S-vacant two-dimensional (2D) MnPS3 nanosheets (Sv-MnPS3). Specifically, M-SAs occupy S-vacancies and activate the neighboring S sites as new active sites for the HER. In turn, Sv-MnPS3 improves the ability of metal-SAs for water dissociation by modulating their magnetic moments. During the HER, H* is generated on metal-SAs and then migrates to neighboring S sites on which H2 is produced, representing catalytic synergism via hydrogen spillover. Among the M1/Sv-MnPS3 candidates, Pd1/Sv-MnPS3 possesses an optimal ΔGH* of 0.01 eV and is both thermodynamically and electrochemically stable. Therefore, the synergism between Pd1 and Sv-MnPS3 enables Pd1/Sv-MnPS3 to be active and durable for the HER. This work provides insights into how to design and understand confined metal-SAs in 2D materials for efficient electrocatalysis.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
密度泛函理论和机器学习揭示金属单原子位点与 S-空隙二维纳米片在高效氢进化中的协同作用
氢进化反应(HER)的高效电催化剂是氢-电能量转换的关键。利用密度泛函理论和机器学习,我们在此揭示了金属单原子(M-SAs)与S空位二维(2D)MnPS3纳米片(Sv-MnPS3)之间的协同作用。具体来说,M-SAs 占据 S 空位并激活邻近的 S 位点,使其成为 HER 的新活性位点。反过来,Sv-MnPS3 通过调节金属-砷的磁矩,提高了金属-砷解离水的能力。在氢化还原过程中,H*在金属-砷上生成,然后迁移到邻近的 S 位点,在这些位点上生成 H2,这就是氢溢出的催化协同作用。在 M1/Sv-MnPS3 候选化合物中,Pd1/Sv-MnPS3 具有 0.01 eV 的最佳 ΔGH* 值,并且在热力学和电化学方面都很稳定。因此,Pd1 和 Sv-MnPS3 之间的协同作用使 Pd1/Sv-MnPS3 对 HER 具有活性和持久性。这项工作为如何设计和理解二维材料中的封闭金属-SAs以实现高效电催化提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
FGL2172-220 peptides improve the antitumor effect of HCMV-IE1mut vaccine against glioblastoma by modulating immunosuppressive cells in the tumor microenvironment. HLA class II neoantigen presentation for CD4+ T cell surveillance in HLA class II-negative colorectal cancer. Pretreatment With Unfractionated Heparin in ST-Elevation Myocardial Infarction—a Propensity Score Matching Analysis. The Diagnosis and Treatment of Hypertrophic Cardiomyopathy. Clinical Practice Guideline: Condylar Hyperplasia of the Mandible—Diagnosis and Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1