Additive-free graphene-based inks for 3D printing functional conductive aerogels

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-09-18 DOI:10.1039/d4ta03082f
Elnaz Erfanian, Milad Goodarzi, Gabriel Banvillet, Farbod Sharif, Mohammad Arjmand, Orlando J. Rojas, Milad Kamkar, Uttandaraman Sundararaj
{"title":"Additive-free graphene-based inks for 3D printing functional conductive aerogels","authors":"Elnaz Erfanian, Milad Goodarzi, Gabriel Banvillet, Farbod Sharif, Mohammad Arjmand, Orlando J. Rojas, Milad Kamkar, Uttandaraman Sundararaj","doi":"10.1039/d4ta03082f","DOIUrl":null,"url":null,"abstract":"This study demonstrates an all-graphene, additive-free, aqueous-based ink for direct ink writing (DIW) to 3D-print functional aerogels for applications in electronics and electromagnetic interference (EMI) shields. We employ a two-step electrochemical method with a specially designed intercalation step that controls the surface functionality of graphene nanosheets. Comprehensive characterization reveals the significant impact of the physicochemical properties of graphene nanosheets on homogeneity, rheology, electrical conductivity, and EMI shielding effectiveness (SE). A critical observation is that rheology alone is insufficient to predict the printability of two-dimensional particulate systems, while ink homogeneity, dictated by inter-sheet interactions, plays a vital role. By focusing on optimizing intercalation conditions, we find that phosphoric acid treatment is most effective in enhancing both printability and conductivity, achieving an electrical conductivity of 158 S cm<small><sup>−1</sup></small> and an EMI SE of 50 dB (at 50 μm thickness) without requiring any post-processing reduction. Systematic experiments with varying durations of phosphoric acid intercalation establish that a 10-minutes treatment produces inks with superior 3D printing fidelity. This innovative approach to graphene ink production enables rapid, continuous, and large-scale manufacturing of lightweight, porous materials, avoiding the need for environmentally harmful reductant chemistries or high-temperature processing. Furthermore, eliminating the reduction step in the fabrication process aligns with industrial demands for energy-efficient production processes and high output rates, marking a significant advancement in the field of materials science and offering promising prospects for applying graphene-based inks in advanced manufacturing technologies.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta03082f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study demonstrates an all-graphene, additive-free, aqueous-based ink for direct ink writing (DIW) to 3D-print functional aerogels for applications in electronics and electromagnetic interference (EMI) shields. We employ a two-step electrochemical method with a specially designed intercalation step that controls the surface functionality of graphene nanosheets. Comprehensive characterization reveals the significant impact of the physicochemical properties of graphene nanosheets on homogeneity, rheology, electrical conductivity, and EMI shielding effectiveness (SE). A critical observation is that rheology alone is insufficient to predict the printability of two-dimensional particulate systems, while ink homogeneity, dictated by inter-sheet interactions, plays a vital role. By focusing on optimizing intercalation conditions, we find that phosphoric acid treatment is most effective in enhancing both printability and conductivity, achieving an electrical conductivity of 158 S cm−1 and an EMI SE of 50 dB (at 50 μm thickness) without requiring any post-processing reduction. Systematic experiments with varying durations of phosphoric acid intercalation establish that a 10-minutes treatment produces inks with superior 3D printing fidelity. This innovative approach to graphene ink production enables rapid, continuous, and large-scale manufacturing of lightweight, porous materials, avoiding the need for environmentally harmful reductant chemistries or high-temperature processing. Furthermore, eliminating the reduction step in the fabrication process aligns with industrial demands for energy-efficient production processes and high output rates, marking a significant advancement in the field of materials science and offering promising prospects for applying graphene-based inks in advanced manufacturing technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 3D 打印功能性导电气凝胶的无添加石墨烯基油墨
本研究展示了一种全石墨烯、无添加剂、水基墨水,用于直接墨水书写(DIW),以三维打印功能性气凝胶,可应用于电子和电磁干扰(EMI)屏蔽。我们采用了一种两步电化学方法,通过专门设计的插层步骤来控制石墨烯纳米片的表面功能。全面的表征揭示了石墨烯纳米片的物理化学特性对均匀性、流变性、导电性和 EMI 屏蔽效果 (SE) 的重要影响。一个重要的观察结果是,仅凭流变性不足以预测二维微粒系统的可印刷性,而由片间相互作用决定的油墨均匀性起着至关重要的作用。通过重点优化插层条件,我们发现磷酸处理在提高印刷适性和导电性方面最为有效,在不需要任何后处理的情况下,导电性达到 158 S cm-1,EMI SE 为 50 dB(厚度为 50 μm)。利用不同的磷酸插层持续时间进行的系统实验表明,10 分钟的处理可产生具有卓越 3D 打印保真度的墨水。这种石墨烯墨水生产的创新方法可实现轻质多孔材料的快速、连续和大规模生产,避免了对环境有害的还原剂化学成分或高温处理。此外,取消制造过程中的还原步骤符合工业对节能生产工艺和高产出率的要求,标志着材料科学领域的重大进步,为石墨烯基墨水在先进制造技术中的应用提供了广阔前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Conformal Active Learning Aided Screening of Ligand Protected Cu-Nanoclusters for CO2 Reduction Reactions Novel two-dimensional conductive metal–organic framework-based heterostructures for high-performance electro-ionic soft actuators Dual network structures of PDMS-based composite foam via anchoring liquid metal nanoparticles for improved thermal conductivity and electromagnetic interference shielding performances A Grafted Flame-retardant Gel Polymer Electrolyte Stabilizing Lithium Metal for High-safety Lithium Metal Battery Beyond conventional: unveiling the impact of Zn anode pretreatment in aqueous zinc-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1