Bacteriophage λ exonuclease and a 5′-phosphorylated DNA guide allow PAM-independent targeting of double-stranded nucleic acids

IF 33.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Nature biotechnology Pub Date : 2024-09-18 DOI:10.1038/s41587-024-02388-9
Shengnan Fu, Junjie Li, Jing Chen, Linghao Zhang, Jiajia Liu, Huiyu Liu, Xin Su
{"title":"Bacteriophage λ exonuclease and a 5′-phosphorylated DNA guide allow PAM-independent targeting of double-stranded nucleic acids","authors":"Shengnan Fu, Junjie Li, Jing Chen, Linghao Zhang, Jiajia Liu, Huiyu Liu, Xin Su","doi":"10.1038/s41587-024-02388-9","DOIUrl":null,"url":null,"abstract":"<p>Sequence-specific recognition of double-stranded nucleic acids is essential for molecular diagnostics and in situ imaging. Clustered regularly interspaced short palindromic repeats and Cas systems rely on protospacer-adjacent motif (PAM)-dependent double-stranded DNA (dsDNA) recognition, limiting the range of targetable sequences and leading to undesired off-target effects. Using single-molecule fluorescence resonance energy transfer analysis, we discover the enzymatic activity of bacteriophage λ exonuclease (λExo). We show binding of 5′-phosphorylated single-stranded DNA (pDNA) to complementary regions on dsDNA and DNA–RNA duplexes, without the need for a PAM-like motif. Upon binding, the λExo–pDNA system catalytically digests the pDNA into nucleotides in the presence of Mg<sup>2+</sup>. This process is sensitive to mismatches within a wide range of the pDNA-binding region, resulting in exceptional sequence specificity and reduced off-target effects in various applications. The absence of a requirement for a specific motif such as a PAM sequence greatly broadens the range of targets. We demonstrate that the λExo–pDNA system is a versatile tool for molecular diagnostics, DNA computing and gene imaging applications.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":null,"pages":null},"PeriodicalIF":33.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-024-02388-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sequence-specific recognition of double-stranded nucleic acids is essential for molecular diagnostics and in situ imaging. Clustered regularly interspaced short palindromic repeats and Cas systems rely on protospacer-adjacent motif (PAM)-dependent double-stranded DNA (dsDNA) recognition, limiting the range of targetable sequences and leading to undesired off-target effects. Using single-molecule fluorescence resonance energy transfer analysis, we discover the enzymatic activity of bacteriophage λ exonuclease (λExo). We show binding of 5′-phosphorylated single-stranded DNA (pDNA) to complementary regions on dsDNA and DNA–RNA duplexes, without the need for a PAM-like motif. Upon binding, the λExo–pDNA system catalytically digests the pDNA into nucleotides in the presence of Mg2+. This process is sensitive to mismatches within a wide range of the pDNA-binding region, resulting in exceptional sequence specificity and reduced off-target effects in various applications. The absence of a requirement for a specific motif such as a PAM sequence greatly broadens the range of targets. We demonstrate that the λExo–pDNA system is a versatile tool for molecular diagnostics, DNA computing and gene imaging applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
噬菌体 λ 外切酶和 5′-磷酸化 DNA 向导可实现双链核酸的 PAM 依赖性靶向
双链核酸的序列特异性识别对于分子诊断和原位成像至关重要。簇状规则间隔短回文重复序列和 Cas 系统依赖于原间隔相邻基序(PAM)的双链 DNA(dsDNA)识别,这限制了可靶序列的范围,并导致不希望出现的脱靶效应。利用单分子荧光共振能量转移分析,我们发现了噬菌体λ外切酶(λExo)的酶活性。我们展示了 5′-磷酸化单链 DNA(pDNA)与 dsDNA 和 DNA-RNA 双链上互补区的结合,而不需要类似 PAM 的基团。结合后,λExo-pDNA 系统会在 Mg2+ 的存在下催化 pDNA 消化成核苷酸。这一过程对 pDNA 结合区大范围内的错配非常敏感,因此在各种应用中都具有极高的序列特异性,减少了脱靶效应。由于不需要 PAM 序列等特定图案,因此大大拓宽了靶标范围。我们证明了 λExo-pDNA 系统是分子诊断、DNA 计算和基因成像应用的多功能工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature biotechnology
Nature biotechnology 工程技术-生物工程与应用微生物
CiteScore
63.00
自引率
1.70%
发文量
382
审稿时长
3 months
期刊介绍: Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research. The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field. Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology. In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.
期刊最新文献
Italy tests first gene-edited vines for winemaking Ancient and versatile CRISPR–Cas nuclease created with ancestral sequence reconstruction CRISPR Nobelists surrender their own European patents What will it take to get miRNA therapies to market? AIntibody: an experimentally validated in silico antibody discovery design challenge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1