Dynamic Active Sites in Electrocatalysis

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-09-18 DOI:10.1002/anie.202415794
Minghui Ning, Sangni Wang, Jun Wan, Zichao Xi, Qiao Chen, Huimin Yu, Yuanmiao Sun, Hui Li, Tianyi Ma, Huanyu Jin
{"title":"Dynamic Active Sites in Electrocatalysis","authors":"Minghui Ning, Sangni Wang, Jun Wan, Zichao Xi, Qiao Chen, Huimin Yu, Yuanmiao Sun, Hui Li, Tianyi Ma, Huanyu Jin","doi":"10.1002/anie.202415794","DOIUrl":null,"url":null,"abstract":"In‐depth understanding of the real‐time behaviors of active sites during electrocatalysis is essential for the advancement of sustainable energy conversion. Recently, the concept of dynamic active sites has been recognized as a potent approach for creating self‐adaptive electrocatalysts that can address a variety of electrocatalytic reactions, outperforming traditional electrocatalysts with static active sites. Nonetheless, the comprehension of the underlying principles that guide the engineering of dynamic active sites is presently insufficient. In this review, we systematically analyze the fundamentals of dynamic active sites for electrocatalysis and consider important future directions for this emerging field. We reveal that dynamic behaviors and reversibility are two crucial factors that influence electrocatalytic performance. By reviewing recent advances in dynamic active sites, we conclude that implementing dynamic electrocatalysis through variable reaction environments, correlating the model of dynamic evolution with catalytic properties, and developing localized and ultrafast in‐situ/operando techniques are keys to designing high‐performance dynamic electrocatalysts. This review paves the way to the development of the next‐generation electrocatalyst and the universal theory for both dynamic and static active sites.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202415794","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In‐depth understanding of the real‐time behaviors of active sites during electrocatalysis is essential for the advancement of sustainable energy conversion. Recently, the concept of dynamic active sites has been recognized as a potent approach for creating self‐adaptive electrocatalysts that can address a variety of electrocatalytic reactions, outperforming traditional electrocatalysts with static active sites. Nonetheless, the comprehension of the underlying principles that guide the engineering of dynamic active sites is presently insufficient. In this review, we systematically analyze the fundamentals of dynamic active sites for electrocatalysis and consider important future directions for this emerging field. We reveal that dynamic behaviors and reversibility are two crucial factors that influence electrocatalytic performance. By reviewing recent advances in dynamic active sites, we conclude that implementing dynamic electrocatalysis through variable reaction environments, correlating the model of dynamic evolution with catalytic properties, and developing localized and ultrafast in‐situ/operando techniques are keys to designing high‐performance dynamic electrocatalysts. This review paves the way to the development of the next‐generation electrocatalyst and the universal theory for both dynamic and static active sites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电催化中的动态活性位点
深入了解电催化过程中活性位点的实时行为,对于推动可持续能源转换至关重要。最近,动态活性位点的概念被认为是创造自适应电催化剂的有效方法,它可以处理各种电催化反应,性能优于具有静态活性位点的传统电催化剂。然而,目前对指导动态活性位点工程的基本原理的理解还不够充分。在这篇综述中,我们系统分析了电催化动态活性位点的基本原理,并探讨了这一新兴领域未来的重要发展方向。我们发现,动态行为和可逆性是影响电催化性能的两个关键因素。通过回顾动态活性位点的最新进展,我们得出结论:通过可变的反应环境实现动态电催化、将动态演化模型与催化特性相关联以及开发局部和超快原位/操作技术是设计高性能动态电催化剂的关键。本综述为开发下一代电催化剂以及动态和静态活性位点的通用理论铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Dynamic Active Sites in Electrocatalysis Stepwise One-Shot Borylation Reactions for Intersecting DABNA Substructures Exhibiting Bright Yellow‒Green Electroluminescence with EQE Beyond 40% and Mild Roll-Off Chemical Synergic Stabilization of High Br-Content Mixed-Halide Wide-Bandgap Perovskites for Durable Multi-Terminal Tandem Solar Cells with Minimized Pb Leakage Exchange of CO2 with CO as Reactant Switches Selectivity in Photoreduction on Co–ZrO2 from C1–3 Paraffin to Small Olefins Metal-Free Wet Chemistry for the Fast Gram-Scale Synthesis of γ-Graphyne and its Derivatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1