Heavy-Atom Tunneling in Ring-Closure Reactions of Beryllium Ozonide Complexes

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-09-18 DOI:10.1021/jacs.4c06137
Yangyu Zhou, Wenbin Fan, Jingjing Tang, Wei Fang, Mingfei Zhou
{"title":"Heavy-Atom Tunneling in Ring-Closure Reactions of Beryllium Ozonide Complexes","authors":"Yangyu Zhou, Wenbin Fan, Jingjing Tang, Wei Fang, Mingfei Zhou","doi":"10.1021/jacs.4c06137","DOIUrl":null,"url":null,"abstract":"Quantum mechanical tunneling (QMT) has long been recognized as crucial for understanding chemical reaction mechanisms, particularly in reactions involving light atoms like hydrogen. However, recent findings have expanded this understanding to include heavy-atom tunneling reactions. In this report, we present the observation of two heavy-atom tunneling reactions involving the spontaneous conversions from end-on bonded beryllium ozonide complexes, OBeOOO (<b>A</b>) and BeOBeOOO (<b>C</b>), to their corresponding side-on bonded ozonide isomers, OBe(η<sup>2</sup>-O<sub>3</sub>) (<b>B</b>) and BeOBe(η<sup>2</sup>-O<sub>3</sub>) (<b>D</b>), respectively, in a cryogenic neon matrix. This discovery is supported by the weak temperature dependence of the rate constants and unusually large <sup>16</sup>O/<sup>18</sup>O kinetic isotope effects. Quantum chemistry calculations reveal extremely low barriers (&lt;1 kcal/mol) for both ring-closure reactions. Additionally, instanton theory calculations on both reactions unveil that the tunneling processes involve the concerted motion of all four oxygen atoms.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c06137","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum mechanical tunneling (QMT) has long been recognized as crucial for understanding chemical reaction mechanisms, particularly in reactions involving light atoms like hydrogen. However, recent findings have expanded this understanding to include heavy-atom tunneling reactions. In this report, we present the observation of two heavy-atom tunneling reactions involving the spontaneous conversions from end-on bonded beryllium ozonide complexes, OBeOOO (A) and BeOBeOOO (C), to their corresponding side-on bonded ozonide isomers, OBe(η2-O3) (B) and BeOBe(η2-O3) (D), respectively, in a cryogenic neon matrix. This discovery is supported by the weak temperature dependence of the rate constants and unusually large 16O/18O kinetic isotope effects. Quantum chemistry calculations reveal extremely low barriers (<1 kcal/mol) for both ring-closure reactions. Additionally, instanton theory calculations on both reactions unveil that the tunneling processes involve the concerted motion of all four oxygen atoms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
臭氧铍络合物闭环反应中的重原子隧道效应
量子力学隧道(QMT)一直被认为是理解化学反应机理的关键,尤其是涉及氢等轻原子的反应。然而,最近的研究结果将这一认识扩展到了重原子隧道反应。在本报告中,我们观察到两个重原子隧道反应,涉及在低温氖基质中,从端对键的臭氧铍复合物 OBeOOO (A) 和 BeOBeOOO (C) 自发转化为相应的侧对键臭氧异构体 OBe(η2-O3) (B) 和 BeOBe(η2-O3) (D)。这一发现得到了速率常数微弱的温度依赖性和异常巨大的 16O/18O 动力同位素效应的支持。量子化学计算显示,这两个闭环反应的壁垒都非常低(1 kcal/mol)。此外,对这两个反应的瞬子理论计算揭示了隧道过程涉及所有四个氧原子的协同运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Synthesis of Mesoporous Catechin Nanoparticles as Biocompatible Drug-Free Antibacterial Mesoformulation Heavy-Atom Tunneling in Ring-Closure Reactions of Beryllium Ozonide Complexes Structural Isomerism in Bimetallic Ag20Cu12 Nanoclusters Cavity Manipulation of Attosecond Charge Migration in Conjugated Dendrimers Rechargeable Mg–Br2 Battery with Ultrafast Bromine Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1