Modeling and supporting adaptive Complex Data-Intensive Web Systems via XML and the O-O paradigm: The OO-XAHM model

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS Array Pub Date : 2024-09-01 DOI:10.1016/j.array.2024.100363
{"title":"Modeling and supporting adaptive Complex Data-Intensive Web Systems via XML and the O-O paradigm: The OO-XAHM model","authors":"","doi":"10.1016/j.array.2024.100363","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>data model</em> is a critical component of an <em>Adaptive Web System</em> (AWS). The major goals of such a data model are describing the <em>application domain</em> of the AWS and capturing data about the user in order to support the “adaptation effect”. There have been many proposals for data models, principally based on knowledge representation, machine learning, logic and reasoning, and, recently, ontologies. These models are focused on the implementation of the core layer of AWS, that is realizing the adaptation of contents and presentations of the system, but sometimes they are poor with respect to the application domain design. In this paper, we present an extension of the state-of-the-art <em>XML Adaptive Hypermedia Model</em> (XAHM), <em>Object-Oriented XAHM</em> (OO-XAHM) that supports the application domain modeling using an <em>object-oriented approach</em>. We also provide the formal definition of the model, its description via <em>Unified Modeling Language</em> (UML), and its implementation using <em>XML Schema</em>. Finally, we provide a complete case study that focuses the attention on the well-known Italian archaeological site <em>Pompeii</em>.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590005624000298/pdfft?md5=6d2e89f7a240ad4c3e1b8653672e843f&pid=1-s2.0-S2590005624000298-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005624000298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The data model is a critical component of an Adaptive Web System (AWS). The major goals of such a data model are describing the application domain of the AWS and capturing data about the user in order to support the “adaptation effect”. There have been many proposals for data models, principally based on knowledge representation, machine learning, logic and reasoning, and, recently, ontologies. These models are focused on the implementation of the core layer of AWS, that is realizing the adaptation of contents and presentations of the system, but sometimes they are poor with respect to the application domain design. In this paper, we present an extension of the state-of-the-art XML Adaptive Hypermedia Model (XAHM), Object-Oriented XAHM (OO-XAHM) that supports the application domain modeling using an object-oriented approach. We also provide the formal definition of the model, its description via Unified Modeling Language (UML), and its implementation using XML Schema. Finally, we provide a complete case study that focuses the attention on the well-known Italian archaeological site Pompeii.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 XML 和 O-O 范式为自适应复杂数据密集型网络系统建模和提供支持:OO-XAHM 模型
数据模型是自适应网络系统(AWS)的重要组成部分。这种数据模型的主要目标是描述自适应网络系统的应用领域和获取用户数据,以支持 "自适应效果"。关于数据模型的建议有很多,主要是基于知识表示、机器学习、逻辑和推理,以及最近的本体论。这些模型侧重于 AWS 核心层的实现,即实现系统内容和表现形式的适应性,但有时它们在应用领域设计方面存在缺陷。在本文中,我们介绍了最先进的 XML 自适应超媒体模型(XAHM)的扩展,即面向对象的 XAHM(OO-XAHM),它支持使用面向对象的方法进行应用领域建模。我们还提供了该模型的正式定义、统一建模语言(UML)对其的描述以及 XML 模式对其的实现。最后,我们提供了一个完整的案例研究,重点关注著名的意大利庞贝考古遗址。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
期刊最新文献
Combining computational linguistics with sentence embedding to create a zero-shot NLIDB Development of automatic CNC machine with versatile applications in art, design, and engineering Dual-model approach for one-shot lithium-ion battery state of health sequence prediction Maximizing influence via link prediction in evolving networks Assessing generalizability of Deep Reinforcement Learning algorithms for Automated Vulnerability Assessment and Penetration Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1