Angle-dependent Hall resistivity and longitudinal resistivity of type-II superconductor

IF 2.1 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Solid State Communications Pub Date : 2024-09-13 DOI:10.1016/j.ssc.2024.115697
Luu Huu Nguyen , Tran Ky Vi , Nguyen Chinh Cuong , Bui Duc Tinh
{"title":"Angle-dependent Hall resistivity and longitudinal resistivity of type-II superconductor","authors":"Luu Huu Nguyen ,&nbsp;Tran Ky Vi ,&nbsp;Nguyen Chinh Cuong ,&nbsp;Bui Duc Tinh","doi":"10.1016/j.ssc.2024.115697","DOIUrl":null,"url":null,"abstract":"<div><p>We use time-dependent Ginzburg–Landau theory in a three-dimensional model, including thermal noise, to analyze angle-dependent Hall resistivity and longitudinal resistivity of type-II superconductor. The Hall resistivity and longitudinal resistivity are calculated as functions of temperature, magnetic field and the angle <span><math><mi>θ</mi></math></span> between the magnetic field and the ab-plane in the vortex-liquid regime. Our theoretical calculations within a self-consistent fluctuation approximation for MgB<sub>2</sub> and HgBa<sub>2</sub>CaCu<sub>2</sub>O<sub>6</sub> materials are in good agreements with the experimental findings for both below and above the critical temperature <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>. We observe that when the field angle decreases, the transition temperature increases and the magnitude of longitudinal resistivity decreases, which is qualitatively comparable to decrease of the perpendicular field component. However, when the magnetic field direction approaches the layer surface, it shows a clear different effect from that of a perpendicular field with the same normal component.</p></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"394 ","pages":"Article 115697"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824002746","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

We use time-dependent Ginzburg–Landau theory in a three-dimensional model, including thermal noise, to analyze angle-dependent Hall resistivity and longitudinal resistivity of type-II superconductor. The Hall resistivity and longitudinal resistivity are calculated as functions of temperature, magnetic field and the angle θ between the magnetic field and the ab-plane in the vortex-liquid regime. Our theoretical calculations within a self-consistent fluctuation approximation for MgB2 and HgBa2CaCu2O6 materials are in good agreements with the experimental findings for both below and above the critical temperature Tc. We observe that when the field angle decreases, the transition temperature increases and the magnitude of longitudinal resistivity decreases, which is qualitatively comparable to decrease of the perpendicular field component. However, when the magnetic field direction approaches the layer surface, it shows a clear different effect from that of a perpendicular field with the same normal component.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
II 型超导体随角度变化的霍尔电阻率和纵向电阻率
我们在一个包含热噪声的三维模型中使用随时间变化的金兹堡-朗道理论,分析了 II 型超导体随角度变化的霍尔电阻率和纵向电阻率。霍尔电阻率和纵向电阻率是作为温度、磁场以及涡流液态下磁场与 ab 平面夹角 θ 的函数来计算的。在自洽波动近似条件下,我们对 MgB2 和 HgBa2CaCu2O6 材料的理论计算结果与低于和高于临界温度 Tc 的实验结果非常吻合。我们观察到,当磁场角度减小时,转变温度升高,纵向电阻率的大小减小,这与垂直磁场分量的减小有本质上的相似性。然而,当磁场方向接近磁层表面时,其效果明显不同于具有相同法向分量的垂直磁场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Communications
Solid State Communications 物理-物理:凝聚态物理
CiteScore
3.40
自引率
4.80%
发文量
287
审稿时长
51 days
期刊介绍: Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged. A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions. The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.
期刊最新文献
(MgO)42 nanocluster: A UV active magic cluster in the (MgO)6n (n = 1–9) series under DFT investigation Synthesis and optimization of cubic shaped magnetite nanoparticles by one-step ultrasound irradiation process The effects of Cobalt doping on the structural, electronic, magnetic, and thermodynamic characteristics of the L10-FeNi alloy: First-principle calculations Effect of Al doping on the magnetic, magneto-structural, and magnetocaloric properties of Ni-Mn-In Heusler alloys Gamma-ray induced luminescence from diamonds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1