{"title":"Exploring the impact of CuCl2 modification on structural variations and dielectric constant in bismuth borate tellurite glasses","authors":"","doi":"10.1016/j.molstruc.2024.140019","DOIUrl":null,"url":null,"abstract":"<div><p>Copper chloride doped boro-tellurite-based glass series with compositions 60TeO<sub>2</sub>-(25-x) Bi<sub>2</sub>O<sub>3</sub>–15B<sub>2</sub>O<sub>3</sub>-xCuCl<sub>2</sub> (<em>x</em> = 0, 5, 10, 15, and 20) were synthesized using the traditional melt-quench procedure. The X-ray diffraction patterns of the examined glasses reveal their amorphous nature. The effect of CuCl<sub>2</sub> addition on the glass network/structural units was studied using vibrational (FTIR/Raman) spectroscopy, and CuCl<sub>2</sub> inclusion in the glass matrix resulted in a transformation from compact TeO<sub>4</sub> to TeO<sub>3</sub> structural units This shows that copper chloride acts as a modifier in the examined glass series, resulting in the creation of non-bridging oxygen (NBOs), meaning that the loosening of the glass network is further supported by a decrease in the glass transition temperature as CuCl<sub>2</sub> content increases. UV–Vis DRS spectra of examined glasses reveal an absorption band corresponding to the typical transition of Cu<sup>2+</sup> ions from <sup>2</sup>B<sub>1g</sub> → <sup>2</sup>B<sub>2g</sub>, situated in deformed octahedral sites in absorption spectra. As Cu<sup>+</sup> concentration rises, the indirect optical band gap values drop from 2.94 eV to 1.75 eV. The metallization criterion values lie between 0.383 and 0.300 suggesting that these glasses are potential candidates for nonlinear optical applications. With an increase in Cu<sup>+</sup> concentration, the values of molar refractive index (R<sub>m</sub>) and molar electronic polarizability <span><math><msub><mi>α</mi><mi>m</mi></msub></math></span> increases from 22.412 to 26.205 and 8.894 to 10.398 respectively, which correlate with increasing dielectric constant (ε′) values as the Cu<sup>+</sup> amount increases. Further dielectric studies reveal non-Debye-type relaxation behaviour.</p></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024025286","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Copper chloride doped boro-tellurite-based glass series with compositions 60TeO2-(25-x) Bi2O3–15B2O3-xCuCl2 (x = 0, 5, 10, 15, and 20) were synthesized using the traditional melt-quench procedure. The X-ray diffraction patterns of the examined glasses reveal their amorphous nature. The effect of CuCl2 addition on the glass network/structural units was studied using vibrational (FTIR/Raman) spectroscopy, and CuCl2 inclusion in the glass matrix resulted in a transformation from compact TeO4 to TeO3 structural units This shows that copper chloride acts as a modifier in the examined glass series, resulting in the creation of non-bridging oxygen (NBOs), meaning that the loosening of the glass network is further supported by a decrease in the glass transition temperature as CuCl2 content increases. UV–Vis DRS spectra of examined glasses reveal an absorption band corresponding to the typical transition of Cu2+ ions from 2B1g → 2B2g, situated in deformed octahedral sites in absorption spectra. As Cu+ concentration rises, the indirect optical band gap values drop from 2.94 eV to 1.75 eV. The metallization criterion values lie between 0.383 and 0.300 suggesting that these glasses are potential candidates for nonlinear optical applications. With an increase in Cu+ concentration, the values of molar refractive index (Rm) and molar electronic polarizability increases from 22.412 to 26.205 and 8.894 to 10.398 respectively, which correlate with increasing dielectric constant (ε′) values as the Cu+ amount increases. Further dielectric studies reveal non-Debye-type relaxation behaviour.
期刊介绍:
The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including:
• Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.)
• Chemical intermediates
• Molecules in excited states
• Biological molecules
• Polymers.
The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example:
• Infrared spectroscopy (mid, far, near)
• Raman spectroscopy and non-linear Raman methods (CARS, etc.)
• Electronic absorption spectroscopy
• Optical rotatory dispersion and circular dichroism
• Fluorescence and phosphorescence techniques
• Electron spectroscopies (PES, XPS), EXAFS, etc.
• Microwave spectroscopy
• Electron diffraction
• NMR and ESR spectroscopies
• Mössbauer spectroscopy
• X-ray crystallography
• Charge Density Analyses
• Computational Studies (supplementing experimental methods)
We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.