IL-33/ST2 enhances MMP-12 expression by macrophages to mediate inflammatory and immune response in IgG4-Related Ophthalmic Disease

IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Cytokine Pub Date : 2024-09-17 DOI:10.1016/j.cyto.2024.156754
{"title":"IL-33/ST2 enhances MMP-12 expression by macrophages to mediate inflammatory and immune response in IgG4-Related Ophthalmic Disease","authors":"","doi":"10.1016/j.cyto.2024.156754","DOIUrl":null,"url":null,"abstract":"<div><p>IgG4-Related Ophthalmic Disease (IgG4-ROD) is a chronic autoimmune-mediated fibrotic disease that predominantly affects the lacrimal glands, often leading to loss of function in the involved tissues or organs. Recent studies have demonstrated that MMP-12 is highly expressed in IgG4-ROD and plays a significant role in regulating immune responses. In this study, we reviewed nine patients diagnosed with IgG4-ROD based on clinical manifestations and histological analysis, and we investigated the expression of IL-33/ST2 and MMP-12 in IgG4-ROD lacrimal gland tissues using IHC. We found that IL-33 interacts with its specific receptor ST2, both of which are significantly overexpressed in IgG4-ROD tissues. Additionally, we successfully constructed a mouse model by introducing the Lat<sup>Y136F</sup> mutation into C57BL/6 mice to mimic IgG4-ROD lacrimal gland involvement, which helped elucidate the mechanisms involved in the induction of MMP-12. Furthermore, immunofluorescence staining confirmed that most MMP-12<sup>+</sup> cells were derived from M2 macrophages, and an ELISA assay demonstrated that IL-33 upregulates MMP-12 in IgG4-ROD. Collectively, these data suggest that the IL-33/ST2/MMP-12 signaling pathway is activated in IgG4-ROD, with IL-33/ST2 potentially promoting M2 macrophage polarization and activation to produce MMP-12, which may serve as a novel therapeutic target for IgG4-ROD.</p></div>","PeriodicalId":297,"journal":{"name":"Cytokine","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1043466624002588/pdfft?md5=c903debe55196987d128569a776777fc&pid=1-s2.0-S1043466624002588-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043466624002588","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

IgG4-Related Ophthalmic Disease (IgG4-ROD) is a chronic autoimmune-mediated fibrotic disease that predominantly affects the lacrimal glands, often leading to loss of function in the involved tissues or organs. Recent studies have demonstrated that MMP-12 is highly expressed in IgG4-ROD and plays a significant role in regulating immune responses. In this study, we reviewed nine patients diagnosed with IgG4-ROD based on clinical manifestations and histological analysis, and we investigated the expression of IL-33/ST2 and MMP-12 in IgG4-ROD lacrimal gland tissues using IHC. We found that IL-33 interacts with its specific receptor ST2, both of which are significantly overexpressed in IgG4-ROD tissues. Additionally, we successfully constructed a mouse model by introducing the LatY136F mutation into C57BL/6 mice to mimic IgG4-ROD lacrimal gland involvement, which helped elucidate the mechanisms involved in the induction of MMP-12. Furthermore, immunofluorescence staining confirmed that most MMP-12+ cells were derived from M2 macrophages, and an ELISA assay demonstrated that IL-33 upregulates MMP-12 in IgG4-ROD. Collectively, these data suggest that the IL-33/ST2/MMP-12 signaling pathway is activated in IgG4-ROD, with IL-33/ST2 potentially promoting M2 macrophage polarization and activation to produce MMP-12, which may serve as a novel therapeutic target for IgG4-ROD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IgG4 相关眼病(IgG4-ROD)是一种由自身免疫介导的慢性纤维化疾病,主要影响泪腺,往往导致受累组织或器官功能丧失。最近的研究表明,MMP-12 在 IgG4-ROD 中高度表达,并在调节免疫反应中发挥重要作用。在本研究中,我们回顾了根据临床表现和组织学分析确诊的9例IgG4-ROD患者,并使用IHC检测了IgG4-ROD泪腺组织中IL-33/ST2和MMP-12的表达。我们发现,IL-33与其特异性受体ST2相互作用,两者在IgG4-ROD组织中均显著过表达。此外,我们还通过在 C57BL/6 小鼠中引入 LatY136F 突变成功构建了一个小鼠模型,以模拟 IgG4-ROD 泪腺受累,这有助于阐明诱导 MMP-12 的相关机制。此外,免疫荧光染色证实,大多数MMP-12+细胞来自M2巨噬细胞,ELISA测定证明,IL-33能上调IgG4-ROD的MMP-12。总之,这些数据表明,IL-33/ST2/MMP-12信号通路在IgG4-ROD中被激活,IL-33/ST2可能促进M2巨噬细胞极化和活化以产生MMP-12,这可能成为IgG4-ROD的一个新的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cytokine
Cytokine 医学-免疫学
CiteScore
7.60
自引率
2.60%
发文量
262
审稿时长
48 days
期刊介绍: The journal Cytokine has an open access mirror journal Cytokine: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. * Devoted exclusively to the study of the molecular biology, genetics, biochemistry, immunology, genome-wide association studies, pathobiology, diagnostic and clinical applications of all known interleukins, hematopoietic factors, growth factors, cytotoxins, interferons, new cytokines, and chemokines, Cytokine provides comprehensive coverage of cytokines and their mechanisms of actions, 12 times a year by publishing original high quality refereed scientific papers from prominent investigators in both the academic and industrial sectors. We will publish 3 major types of manuscripts: 1) Original manuscripts describing research results. 2) Basic and clinical reviews describing cytokine actions and regulation. 3) Short commentaries/perspectives on recently published aspects of cytokines, pathogenesis and clinical results.
期刊最新文献
Associations between per- and poly-fluoroalkyl substance (PFAS) exposure and immune responses among women in the California Teachers study: A cross-sectional evaluation Old drug, new use: Recent advances for G-CSF IL-33/ST2 enhances MMP-12 expression by macrophages to mediate inflammatory and immune response in IgG4-Related Ophthalmic Disease Optimizing CAR-T cell Culture: Differential effects of IL-2, IL-12, and IL-21 on CAR-T cells Lupeol stimulates iNOS, TNF-α, and IL-10 expression in the U937 cell line infected with old-world Leishmania donovani
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1