Ke Yao Sun , Xin Yue Bai , Lei Zhang , Xin Zhang , Qian Qian Hu , Yu Xuan Song , Rong Rong Qiang , Ning Zhang , Jia Lun Zou , Yan Ling Yang , Yang Xiang
{"title":"A new strategy for the treatment of intracerebral hemorrhage: Ferroptosis","authors":"Ke Yao Sun , Xin Yue Bai , Lei Zhang , Xin Zhang , Qian Qian Hu , Yu Xuan Song , Rong Rong Qiang , Ning Zhang , Jia Lun Zou , Yan Ling Yang , Yang Xiang","doi":"10.1016/j.expneurol.2024.114961","DOIUrl":null,"url":null,"abstract":"<div><p>Intracerebral hemorrhage, is a cerebrovascular disease with high morbidity, mortality, and disability. Due to the lack of effective clinical treatments, the development of new drugs to treat intracerebral hemorrhage is necessary. In recent years, ferroptosis has been found to play an important role in the pathophysiological process of intracerebral hemorrhage, which can be treated by inhibiting ferroptosis and thus intracerebral hemorrhage. This article aims to explain the mechanism of ferroptosis and its relationship to intracerebral hemorrhage. In the meantime, it briefly discusses the molecules identified to alleviate intracerebral hemorrhage by inhibiting ferroptosis, along with other clinical agents that are expected to treat intracerebral hemorrhage through this mechanism. In addition, a brief overview of the morphological alterations of different forms of cell death and their role in ICH is provided. Finally, the challenges that may arise in translating ferroptosis inhibitors from basic research to clinical use are presented. This article serves as a reference and provides insights to aid in the treatment of intracerebral hemorrhage in the clinic.</p></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"382 ","pages":"Article 114961"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488624002875","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Intracerebral hemorrhage, is a cerebrovascular disease with high morbidity, mortality, and disability. Due to the lack of effective clinical treatments, the development of new drugs to treat intracerebral hemorrhage is necessary. In recent years, ferroptosis has been found to play an important role in the pathophysiological process of intracerebral hemorrhage, which can be treated by inhibiting ferroptosis and thus intracerebral hemorrhage. This article aims to explain the mechanism of ferroptosis and its relationship to intracerebral hemorrhage. In the meantime, it briefly discusses the molecules identified to alleviate intracerebral hemorrhage by inhibiting ferroptosis, along with other clinical agents that are expected to treat intracerebral hemorrhage through this mechanism. In addition, a brief overview of the morphological alterations of different forms of cell death and their role in ICH is provided. Finally, the challenges that may arise in translating ferroptosis inhibitors from basic research to clinical use are presented. This article serves as a reference and provides insights to aid in the treatment of intracerebral hemorrhage in the clinic.
脑出血是一种发病率高、死亡率高、致残率高的脑血管疾病。由于缺乏有效的临床治疗手段,开发治疗脑出血的新药十分必要。近年来,人们发现铁蛋白沉积在脑出血的病理生理过程中起着重要作用,可以通过抑制铁蛋白沉积进而治疗脑出血。本文旨在解释铁氧化的机制及其与脑出血的关系。同时,文章简要讨论了已发现的通过抑制铁蛋白沉积缓解脑内出血的分子,以及有望通过这一机制治疗脑内出血的其他临床药物。此外,还简要介绍了不同形式细胞死亡的形态学改变及其在 ICH 中的作用。最后,介绍了将铁蛋白沉积抑制剂从基础研究转化为临床应用可能面临的挑战。本文可作为临床治疗脑出血的参考文献,并为临床治疗脑出血提供帮助。
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.