{"title":"An immersed multi-material arbitrary Lagrangian–Eulerian finite element method for fluid–structure-interaction problems","authors":"","doi":"10.1016/j.cma.2024.117398","DOIUrl":null,"url":null,"abstract":"<div><p>Fluid–structure-interaction (FSI) phenomena are widely concerned in engineering practice and challenge current numerical methods. In this article, the finite element method is strongly coupled with the multi-material arbitrary Lagrangian–Eulerian (MMALE) method to develop a monolithic FSI method named the immersed multi-material arbitrary Lagrangian–Eulerian finite element method (IALEFEM). By immersing the finite elements in the MMALE computational grid, the fluid–solid interface is directly tracked by the element boundary with accurate normal directions. The fluid–structure-interaction is implicitly implemented by assembling the nodal variables and updating the Lagrangian momentum equation on the MMALE grid. Combining the advantages of both MMALE and FEM with the immersed boundary method, the IALEFEM is effective for solving complicated FSI problems with multi-material fluid flow. A slip fluid–structure-interaction method is also proposed to enhance the computational accuracy in simulating FSI problems with significantly different velocity fields. The accuracy and effectiveness of the IALEFEM are verified and validated by several benchmark numerical examples including the shock-cylinder obstacle interaction, flexible panel deformation induced by shock wave, dam break problem with large structural deformation, water entry of a wedge, fragmentation of a cylinder shell induced by blast, response of elastic plate subjected to spherical near-field explosion and structural damage of open-frame building under blast loading.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524006534","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fluid–structure-interaction (FSI) phenomena are widely concerned in engineering practice and challenge current numerical methods. In this article, the finite element method is strongly coupled with the multi-material arbitrary Lagrangian–Eulerian (MMALE) method to develop a monolithic FSI method named the immersed multi-material arbitrary Lagrangian–Eulerian finite element method (IALEFEM). By immersing the finite elements in the MMALE computational grid, the fluid–solid interface is directly tracked by the element boundary with accurate normal directions. The fluid–structure-interaction is implicitly implemented by assembling the nodal variables and updating the Lagrangian momentum equation on the MMALE grid. Combining the advantages of both MMALE and FEM with the immersed boundary method, the IALEFEM is effective for solving complicated FSI problems with multi-material fluid flow. A slip fluid–structure-interaction method is also proposed to enhance the computational accuracy in simulating FSI problems with significantly different velocity fields. The accuracy and effectiveness of the IALEFEM are verified and validated by several benchmark numerical examples including the shock-cylinder obstacle interaction, flexible panel deformation induced by shock wave, dam break problem with large structural deformation, water entry of a wedge, fragmentation of a cylinder shell induced by blast, response of elastic plate subjected to spherical near-field explosion and structural damage of open-frame building under blast loading.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.