Exploring the dielectric loss of Martian regolith in the frequency domain using Zhurong radar data

IF 2.5 2区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Icarus Pub Date : 2024-09-14 DOI:10.1016/j.icarus.2024.116315
{"title":"Exploring the dielectric loss of Martian regolith in the frequency domain using Zhurong radar data","authors":"","doi":"10.1016/j.icarus.2024.116315","DOIUrl":null,"url":null,"abstract":"<div><p>Martian regolith is one of the primary science objectives of Mars exploration missions. The Rover Penetrating Radar carried by Zhurong rover allows for high-resolution subsurface imaging and <em>in-situ</em> measurements of Martian regolith dielectric properties, which are crucial to advance our understanding of Martian geology and hydrological evolution. While earlier studies have derived dielectric constants for the shallow subsurface, further characterization of subsurface materials requires the determination of attenuation properties. In this study, we applied the centroid-frequency shift method to explore the attenuation property of the Martian regolith in the frequency domain. Lateral attenuation variation was analyzed in detail by integrating subsurface radargram and navigation terrain images. The results show that, within a depth of ∼4 m, the attenuation of radar signal for Zhurong subsurface material is equal to a loss tangent of 0.0079, with a standard deviation of 0.001. Based on the loss tangent value, dielectric permittivity and ground characterization, we preclude the possibility that the regolith is predominantly igneous materials. The lateral variation of the attenuation property could likely be attributed to changes in the proportion of duricrusts, which are heterogeneously distributed along the rover traverse. Our findings offer valuable information for understanding the Martian regolith and its evolution, serving as a important reference for future Mars sample return missions.</p></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524003750","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Martian regolith is one of the primary science objectives of Mars exploration missions. The Rover Penetrating Radar carried by Zhurong rover allows for high-resolution subsurface imaging and in-situ measurements of Martian regolith dielectric properties, which are crucial to advance our understanding of Martian geology and hydrological evolution. While earlier studies have derived dielectric constants for the shallow subsurface, further characterization of subsurface materials requires the determination of attenuation properties. In this study, we applied the centroid-frequency shift method to explore the attenuation property of the Martian regolith in the frequency domain. Lateral attenuation variation was analyzed in detail by integrating subsurface radargram and navigation terrain images. The results show that, within a depth of ∼4 m, the attenuation of radar signal for Zhurong subsurface material is equal to a loss tangent of 0.0079, with a standard deviation of 0.001. Based on the loss tangent value, dielectric permittivity and ground characterization, we preclude the possibility that the regolith is predominantly igneous materials. The lateral variation of the attenuation property could likely be attributed to changes in the proportion of duricrusts, which are heterogeneously distributed along the rover traverse. Our findings offer valuable information for understanding the Martian regolith and its evolution, serving as a important reference for future Mars sample return missions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Icarus
Icarus 地学天文-天文与天体物理
CiteScore
6.30
自引率
18.80%
发文量
356
审稿时长
2-4 weeks
期刊介绍: Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.
期刊最新文献
Exploring the dielectric loss of Martian regolith in the frequency domain using Zhurong radar data Editorial Board Magnetosonic waves in the Martian ionosphere driven by upstream proton cyclotron waves: Two-point observations by MAVEN and Mars Express The diurnal variation of dust and water ice aerosol optical depth at Jezero crater observed by MEDA/TIRS over a full Martian year Soil diversity at Jezero crater and Comparison to Gale crater, Mars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1