GMM estimation for high-dimensional panel data models

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-08-01 DOI:10.1016/j.jeconom.2024.105853
Tingting Cheng , Chaohua Dong , Jiti Gao , Oliver Linton
{"title":"GMM estimation for high-dimensional panel data models","authors":"Tingting Cheng ,&nbsp;Chaohua Dong ,&nbsp;Jiti Gao ,&nbsp;Oliver Linton","doi":"10.1016/j.jeconom.2024.105853","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study a class of high dimensional moment restriction panel data models with interactive effects, where the factors are unobserved and these factor loadings are nonparametrically unknown smooth functions of individual characteristic variables. We allow the dimension of the parameter vector and the number of moment conditions to diverge with the sample size. This is a very general framework and is closely related to many existing linear and nonlinear panel data models. In order to estimate the unknown parameters, factors and factor loadings, we propose a sieve-based generalized method of moments estimation method and we show that under a set of simple identification conditions, all those unknown quantities can be consistently estimated. Further we establish asymptotic distributions of the proposed estimators. In addition, we propose tests for over-identification, specification of factor loading functions, and establish their large sample properties. Moreover, a number of simulation studies are conducted to examine the performance of the proposed estimators and test statistics in finite samples. An empirical example on stock return prediction is studied to demonstrate both the empirical relevance and the applicability of the proposed framework and corresponding estimation and testing methods.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"244 1","pages":"Article 105853"},"PeriodicalIF":9.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304407624001982/pdfft?md5=d3431c6c6b2ea9a2232bb95323a846ed&pid=1-s2.0-S0304407624001982-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001982","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a class of high dimensional moment restriction panel data models with interactive effects, where the factors are unobserved and these factor loadings are nonparametrically unknown smooth functions of individual characteristic variables. We allow the dimension of the parameter vector and the number of moment conditions to diverge with the sample size. This is a very general framework and is closely related to many existing linear and nonlinear panel data models. In order to estimate the unknown parameters, factors and factor loadings, we propose a sieve-based generalized method of moments estimation method and we show that under a set of simple identification conditions, all those unknown quantities can be consistently estimated. Further we establish asymptotic distributions of the proposed estimators. In addition, we propose tests for over-identification, specification of factor loading functions, and establish their large sample properties. Moreover, a number of simulation studies are conducted to examine the performance of the proposed estimators and test statistics in finite samples. An empirical example on stock return prediction is studied to demonstrate both the empirical relevance and the applicability of the proposed framework and corresponding estimation and testing methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维面板数据模型的 GMM 估算
在本文中,我们研究了一类具有交互效应的高维矩限制面板数据模型,在这类模型中,因子是非观测的,这些因子载荷是个体特征变量的非参数未知平稳函数。我们允许参数向量的维数和矩条件的数量随样本量的增加而变化。这是一个非常通用的框架,与许多现有的线性和非线性面板数据模型密切相关。为了估计未知参数、因子和因子载荷,我们提出了一种基于筛子的广义矩估计方法,并证明在一组简单的识别条件下,所有这些未知量都可以被一致地估计出来。此外,我们还建立了所提估计量的渐近分布。此外,我们还提出了过度识别的检验方法、因子载荷函数的规范,并建立了它们的大样本特性。此外,我们还进行了大量模拟研究,以检验所提出的估计器和检验统计量在有限样本中的性能。我们还研究了一个关于股票回报预测的实证案例,以证明所提出的框架和相应的估计与检验方法的实证相关性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Inference in cluster randomized trials with matched pairs Why are replication rates so low? On the spectral density of fractional Ornstein–Uhlenbeck processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1