{"title":"Research on predictive modeling method of loader working resistance in a sensor-less environment","authors":"","doi":"10.1016/j.engappai.2024.109263","DOIUrl":null,"url":null,"abstract":"<div><p>In view of the inconvenient installation and high cost of the current multi-sensor data prediction methods for predicting loader working resistance, this study proposes a method oriented towards predicting loader working resistance in environments with fewer sensors. First, building on previous research (Wu et al., 2023), non-essential sensor features are removed by a maximum information coefficient (MIC)method that incorporates expert experience. Second, the Optuna automation framework is embedded to realize the training and testing of the proposed method and compare its prediction performance with other popular methods. Finally, in order to verify its generalization performance, it is validated using loader operation data under different working conditions. The results of this study demonstrate that the proposed method effectively and accurately characterizes the work resistance of loaders under operating conditions. With short testing times and excellent generalization performance, the method proves highly applicable and valuable.</p></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624014210","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In view of the inconvenient installation and high cost of the current multi-sensor data prediction methods for predicting loader working resistance, this study proposes a method oriented towards predicting loader working resistance in environments with fewer sensors. First, building on previous research (Wu et al., 2023), non-essential sensor features are removed by a maximum information coefficient (MIC)method that incorporates expert experience. Second, the Optuna automation framework is embedded to realize the training and testing of the proposed method and compare its prediction performance with other popular methods. Finally, in order to verify its generalization performance, it is validated using loader operation data under different working conditions. The results of this study demonstrate that the proposed method effectively and accurately characterizes the work resistance of loaders under operating conditions. With short testing times and excellent generalization performance, the method proves highly applicable and valuable.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.