An adaptive gravitational search algorithm for optimizing mechanical engineering design and machining problems

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-09-17 DOI:10.1016/j.engappai.2024.109298
{"title":"An adaptive gravitational search algorithm for optimizing mechanical engineering design and machining problems","authors":"","doi":"10.1016/j.engappai.2024.109298","DOIUrl":null,"url":null,"abstract":"<div><p>The gravitational search algorithm (GSA) is widely used for solving optimization problems because it performs in a superior manner as compared to various competing evolutionary and swarm-based metaheuristics. However, GSA frequently gets trapped in local optima due to a lack of solution diversity. Although chaotic gravitational search algorithm (CGSA) can resolve this issue to some extent but its degraded exploitation rate and convergence speed may not result in desired outcome. To this end, diversity-based chaotic GSA (DCGSA) has exhibited its capability to resolve the issues encountered with GSA and CGSA to a certain extent for unconstrained problems. DCGSA achieves this characteristic through the use of an adaptive gravitational constant, which varies according to the diversity values of the population. Since most real-world problems are subjected to some constraints, it is prudent to improve the performance of GSA in solving constrained optimization problems. The present study integrates the enhanced search capability of DCGSA with a generalized constraint handling mechanism to improve the performance of GSA in solving constrained problems. It is observed that DCGSA significantly outperforms GSA on both CEC (Congress on evolutionary computation) 2006, 2010 and 2017 functions and competes strongly with CGSA. Diversity analysis shows that the capability to balance exploration and exploitation rates is enhanced using CGSA and DCGSA. Furthermore, DCGSA algorithms outperform GSA and CGSA on real-world machining and CEC 2020 mechanical design problems. Comparison with state-of-the-art algorithms is made to analyze the performance of the algorithms from a larger perspective.</p></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624014568","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The gravitational search algorithm (GSA) is widely used for solving optimization problems because it performs in a superior manner as compared to various competing evolutionary and swarm-based metaheuristics. However, GSA frequently gets trapped in local optima due to a lack of solution diversity. Although chaotic gravitational search algorithm (CGSA) can resolve this issue to some extent but its degraded exploitation rate and convergence speed may not result in desired outcome. To this end, diversity-based chaotic GSA (DCGSA) has exhibited its capability to resolve the issues encountered with GSA and CGSA to a certain extent for unconstrained problems. DCGSA achieves this characteristic through the use of an adaptive gravitational constant, which varies according to the diversity values of the population. Since most real-world problems are subjected to some constraints, it is prudent to improve the performance of GSA in solving constrained optimization problems. The present study integrates the enhanced search capability of DCGSA with a generalized constraint handling mechanism to improve the performance of GSA in solving constrained problems. It is observed that DCGSA significantly outperforms GSA on both CEC (Congress on evolutionary computation) 2006, 2010 and 2017 functions and competes strongly with CGSA. Diversity analysis shows that the capability to balance exploration and exploitation rates is enhanced using CGSA and DCGSA. Furthermore, DCGSA algorithms outperform GSA and CGSA on real-world machining and CEC 2020 mechanical design problems. Comparison with state-of-the-art algorithms is made to analyze the performance of the algorithms from a larger perspective.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化机械工程设计和加工问题的自适应引力搜索算法
引力搜索算法(GSA)被广泛用于解决优化问题,因为与各种竞争性的进化算法和基于蜂群的元启发式算法相比,它的性能更优越。然而,由于缺乏解决方案的多样性,GSA 经常陷入局部最优状态。虽然混沌引力搜索算法(CGSA)能在一定程度上解决这一问题,但其降低的利用率和收敛速度可能无法实现理想的结果。为此,基于多样性的混沌引力搜索算法(DCGSA)在一定程度上解决了无约束问题中混沌引力搜索算法(GSA)和混沌引力搜索算法(CGSA)所遇到的问题。DCGSA 通过使用自适应引力常数来实现这一特性,该引力常数随群体的多样性值而变化。由于现实世界中的大多数问题都会受到一些约束,因此提高 GSA 在解决约束优化问题时的性能是非常明智的。本研究将 DCGSA 的增强搜索能力与广义约束处理机制相结合,以提高 GSA 在解决约束问题时的性能。研究发现,DCGSA 在 2006 年、2010 年和 2017 年的 CEC(进化计算大会)函数上的表现都明显优于 GSA,并与 CGSA 展开了激烈竞争。多样性分析表明,使用 CGSA 和 DCGSA 可以增强平衡探索率和开发率的能力。此外,DCGSA 算法在实际机械加工和 CEC 2020 机械设计问题上的表现优于 GSA 和 CGSA。通过与最先进算法的比较,从更广阔的角度分析了算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Constrained multi-objective optimization assisted by convergence and diversity auxiliary tasks A deep sequence-to-sequence model for power swing blocking of distance protection in power transmission lines A Chinese named entity recognition method for landslide geological disasters based on deep learning A deep learning ensemble approach for malware detection in Internet of Things utilizing Explainable Artificial Intelligence Evaluating the financial credibility of third-party logistic providers through a novel frank operators-driven group decision-making model with dual hesitant linguistic q-rung orthopair fuzzy information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1