{"title":"An Artificial Neural Network approach to assess road roughness using smartphone-based crowdsourcing data","authors":"","doi":"10.1016/j.engappai.2024.109308","DOIUrl":null,"url":null,"abstract":"<div><p>Monitoring road surface conditions is a crucial task for road authorities to develop effective infrastructure maintenance programs. Despite smartphones have been introduced as cost-effective and real-time solution for this purpose, several challenges must be addressed before their real-world application. This study investigates the utilization of smartphone-based crowdsourcing data and Artificial Neural Networks (ANN) to enhance the precision of road surface condition estimation. Initially, data are collected from four different smartphone models mounted in various vehicles, including vertical acceleration, geographic location, and speed. The root mean square of the vertical acceleration data, along with vehicle speed, is then employed as input features for the ANN, while the true International Roughness Index (IRI) values serve as the corresponding output features. Comparative analysis between ANN and regression models based on statistical metrics such as Mean Squared Error (MSE) and Pearson correlation revealed that ANN outperforms regression models. The obtained MSE and Pearson correlation values for ANN (0.56 and 0.91) surpass those of regression models (0.72 and 0.88). Moreover, results indicated that utilizing crowdsourcing smartphone data yielded superior outcomes compared to using a single smartphone for this purpose.</p></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624014660","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring road surface conditions is a crucial task for road authorities to develop effective infrastructure maintenance programs. Despite smartphones have been introduced as cost-effective and real-time solution for this purpose, several challenges must be addressed before their real-world application. This study investigates the utilization of smartphone-based crowdsourcing data and Artificial Neural Networks (ANN) to enhance the precision of road surface condition estimation. Initially, data are collected from four different smartphone models mounted in various vehicles, including vertical acceleration, geographic location, and speed. The root mean square of the vertical acceleration data, along with vehicle speed, is then employed as input features for the ANN, while the true International Roughness Index (IRI) values serve as the corresponding output features. Comparative analysis between ANN and regression models based on statistical metrics such as Mean Squared Error (MSE) and Pearson correlation revealed that ANN outperforms regression models. The obtained MSE and Pearson correlation values for ANN (0.56 and 0.91) surpass those of regression models (0.72 and 0.88). Moreover, results indicated that utilizing crowdsourcing smartphone data yielded superior outcomes compared to using a single smartphone for this purpose.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.