Spatial heterogeneity in the potential distribution of Aedes mosquitoes in India under current and future climatic scenarios

IF 2.1 3区 医学 Q2 PARASITOLOGY Acta tropica Pub Date : 2024-09-13 DOI:10.1016/j.actatropica.2024.107403
{"title":"Spatial heterogeneity in the potential distribution of Aedes mosquitoes in India under current and future climatic scenarios","authors":"","doi":"10.1016/j.actatropica.2024.107403","DOIUrl":null,"url":null,"abstract":"<div><p><em>Aedes</em> is the most globally distributed mosquito genus in the 21st century and transmits various arboviral diseases. The rapid expansion of <em>Ae. Aegypti</em> and <em>Ae. albopictus</em> breeding habitats is a significant threat to global public health, driven by temperature and precipitation changes. In this study, bioclimatic variables were employed to predict the spatial distribution of <em>Ae. aegypti</em> and <em>Ae. albopictus</em> in India. The reference coordinate points of (<em>n</em> = 583) <em>Aedes</em> occurrences at a scale of ∼1 km and nineteen bioclimatic factors were retrieved to train SDM (Species Distribution Models) for both species. Maximum entropy modelling was used to predict the species’ fundamental climatic niche distributions. Future projections were made using global climate models for 2021–2040 and 2081–2100 separately. The models performed reasonably well (AUC &gt; 0.77). Both species thrived in reduced diurnal temperature and higher annual mean temperatures, with suitability increasing alongside precipitation. <em>Ae. aegypti</em>’s projected present and future distribution was broader than that of <em>Ae. Albopictus</em>. The expansion of <em>Aedes</em> suitability varied under different future climatic scenarios. Suitability for <em>Ae. aegypti</em> could expand from between 17.6 and 41.1 % in 2100 under SSP (shared socioeconomic pathways) scenarios 1 and 3, respectively, whereas for <em>Ae. albopictus</em> suitability increased from between 10.2 and 25 % under SSP scenarios 1 and 3 respectively. Preparing for future epidemics and outbreaks requires robust vector distribution models to identify high-risk areas, allocate resources for surveillance and control, and implement prevention strategies.</p></div>","PeriodicalId":7240,"journal":{"name":"Acta tropica","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001706X24002845/pdfft?md5=e025a6dad7ba5098523310c601f1c106&pid=1-s2.0-S0001706X24002845-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta tropica","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001706X24002845","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aedes is the most globally distributed mosquito genus in the 21st century and transmits various arboviral diseases. The rapid expansion of Ae. Aegypti and Ae. albopictus breeding habitats is a significant threat to global public health, driven by temperature and precipitation changes. In this study, bioclimatic variables were employed to predict the spatial distribution of Ae. aegypti and Ae. albopictus in India. The reference coordinate points of (n = 583) Aedes occurrences at a scale of ∼1 km and nineteen bioclimatic factors were retrieved to train SDM (Species Distribution Models) for both species. Maximum entropy modelling was used to predict the species’ fundamental climatic niche distributions. Future projections were made using global climate models for 2021–2040 and 2081–2100 separately. The models performed reasonably well (AUC > 0.77). Both species thrived in reduced diurnal temperature and higher annual mean temperatures, with suitability increasing alongside precipitation. Ae. aegypti’s projected present and future distribution was broader than that of Ae. Albopictus. The expansion of Aedes suitability varied under different future climatic scenarios. Suitability for Ae. aegypti could expand from between 17.6 and 41.1 % in 2100 under SSP (shared socioeconomic pathways) scenarios 1 and 3, respectively, whereas for Ae. albopictus suitability increased from between 10.2 and 25 % under SSP scenarios 1 and 3 respectively. Preparing for future epidemics and outbreaks requires robust vector distribution models to identify high-risk areas, allocate resources for surveillance and control, and implement prevention strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta tropica
Acta tropica 医学-寄生虫学
CiteScore
5.40
自引率
11.10%
发文量
383
审稿时长
37 days
期刊介绍: Acta Tropica, is an international journal on infectious diseases that covers public health sciences and biomedical research with particular emphasis on topics relevant to human and animal health in the tropics and the subtropics.
期刊最新文献
Molecular cluster, transmission characteristics, origin and dynamics analysis of HIV-1 CRF59_01B in China: A molecular epidemiology study Identification of severe fever with thrombocytopenia syndrome virus isolates in the northwest of Hubei Province, China Spatial heterogeneity in the potential distribution of Aedes mosquitoes in India under current and future climatic scenarios Qualitative analysis of Fasciola gigantica excretory and secretory products coimmunoprecipitated with buffalo secondary infection sera shows dissimilar components from primary infection sera Dog ectoparasites as sentinels for pathogenic Rickettsia and Bartonella in rural Guatemala
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1