DCFusion: Difference correlation-driven fusion mechanism of infrared and visible images

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Pub Date : 2024-09-12 DOI:10.1016/j.patcog.2024.111002
{"title":"DCFusion: Difference correlation-driven fusion mechanism of infrared and visible images","authors":"","doi":"10.1016/j.patcog.2024.111002","DOIUrl":null,"url":null,"abstract":"<div><p>In end-to-end image fusion models, the loss function significantly impacts performance. However, most loss functions treat salient and background regions in source images equally, failing to distinguish complementary areas in multimodal images. This limits the model’s ability to effectively integrate information from these regions. Therefore, we propose difference correlation-driven fusion mechanism of infrared and visible images, which called DCFusion. Specifically, the model utilizes a dual-branch interactive network that dynamically fuses cross-modal multi-scale complementary information through element-wise multiplication, effectively integrating region-specific information. We introduce a two-stage method for generating salient target masks that adaptively focus on high-contrast regions in infrared images by analyzing pixel contrasts in local areas. Furthermore, we utilize the salient target masks to create heterogeneous images and design the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>S</mi><mi>C</mi><mi>D</mi></mrow></msub></math></span> loss function to minimize the information gap between the heterogeneous images and the fused image, thereby enhancing the model’s interpretability. Experiments on the RoadScene and TNO datasets show that DCFusion surpasses with existing representativity fusion approaches, achieving state-of-the-art performance in both subjective visual and objective evaluations. Our code will be publicly available at <span><span>https://github.com/MinLila/DCFusion</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324007532","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In end-to-end image fusion models, the loss function significantly impacts performance. However, most loss functions treat salient and background regions in source images equally, failing to distinguish complementary areas in multimodal images. This limits the model’s ability to effectively integrate information from these regions. Therefore, we propose difference correlation-driven fusion mechanism of infrared and visible images, which called DCFusion. Specifically, the model utilizes a dual-branch interactive network that dynamically fuses cross-modal multi-scale complementary information through element-wise multiplication, effectively integrating region-specific information. We introduce a two-stage method for generating salient target masks that adaptively focus on high-contrast regions in infrared images by analyzing pixel contrasts in local areas. Furthermore, we utilize the salient target masks to create heterogeneous images and design the LSCD loss function to minimize the information gap between the heterogeneous images and the fused image, thereby enhancing the model’s interpretability. Experiments on the RoadScene and TNO datasets show that DCFusion surpasses with existing representativity fusion approaches, achieving state-of-the-art performance in both subjective visual and objective evaluations. Our code will be publicly available at https://github.com/MinLila/DCFusion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DCFusion:红外和可见光图像的差分相关驱动融合机制
在端到端图像融合模型中,损失函数对性能有很大影响。然而,大多数损失函数对源图像中的突出区域和背景区域一视同仁,无法区分多模态图像中的互补区域。这就限制了模型有效整合这些区域信息的能力。因此,我们提出了红外图像和可见光图像的差异相关驱动融合机制,即 DCFusion。具体来说,该模型利用双分支交互网络,通过元素乘法动态融合跨模态多尺度互补信息,有效整合特定区域的信息。我们介绍了一种分两个阶段生成突出目标掩码的方法,这种掩码可通过分析局部区域的像素对比度,自适应地聚焦于红外图像中的高对比度区域。此外,我们还利用突出目标掩码创建异质图像,并设计 LSCD 损失函数来最小化异质图像与融合图像之间的信息差距,从而增强模型的可解释性。在 RoadScene 和 TNO 数据集上的实验表明,DCFusion 超越了现有的表征融合方法,在主观视觉和客观评估方面都达到了最先进的性能。我们的代码将在 https://github.com/MinLila/DCFusion 上公开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
期刊最新文献
Self-distillation with beta label smoothing-based cross-subject transfer learning for P300 classification L2T-DFM: Learning to Teach with Dynamic Fused Metric Image shadow removal via multi-scale deep Retinex decomposition ANNE: Adaptive Nearest Neighbours and Eigenvector-based sample selection for robust learning with noisy labels Consistency-driven feature scoring and regularization network for visible–infrared person re-identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1