Electric property of solid hydrogen and magnetoresistivity of tin superhydride

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Physics and Chemistry of Solids Pub Date : 2024-09-12 DOI:10.1016/j.jpcs.2024.112322
{"title":"Electric property of solid hydrogen and magnetoresistivity of tin superhydride","authors":"","doi":"10.1016/j.jpcs.2024.112322","DOIUrl":null,"url":null,"abstract":"<div><p>We derive the physical mechanisms that deny solid hydrogen to be a metal for any pressure. Fermi- nor strange-metallic phase cannot be achieved in solid hydrogen with applied pressure. The resistance and Raman data indicate insufficient carrier density and large-angle electron-ion scattering induced resistivity in molecular or atomic solid hydrogen. In the absence of Fermi-metallic or strange-metallic phase, solid hydrogen cannot superconduct for any temperature and pressure. Doping hydrogen to form superhydride can lead to low resistivity metallic phase. We show that the resistance and magnetoresistance data for Sn-H superhydride does indicate superconductivity (at high pressures) due to the observed strange normal-state metallic phase with large carrier density. We exploit the Ionization Energy Theory and the low temperature Fermi liquid transport theory to derive the magnetoresistance formula and the magnetic-field induced scattering rate mechanisms to justify the strange metallic phase that obeys Arulsamy fermions and superconductivity in Sn-H.</p></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724004578","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We derive the physical mechanisms that deny solid hydrogen to be a metal for any pressure. Fermi- nor strange-metallic phase cannot be achieved in solid hydrogen with applied pressure. The resistance and Raman data indicate insufficient carrier density and large-angle electron-ion scattering induced resistivity in molecular or atomic solid hydrogen. In the absence of Fermi-metallic or strange-metallic phase, solid hydrogen cannot superconduct for any temperature and pressure. Doping hydrogen to form superhydride can lead to low resistivity metallic phase. We show that the resistance and magnetoresistance data for Sn-H superhydride does indicate superconductivity (at high pressures) due to the observed strange normal-state metallic phase with large carrier density. We exploit the Ionization Energy Theory and the low temperature Fermi liquid transport theory to derive the magnetoresistance formula and the magnetic-field induced scattering rate mechanisms to justify the strange metallic phase that obeys Arulsamy fermions and superconductivity in Sn-H.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固态氢的电特性和锡超氢的磁电阻率
我们得出了固态氢在任何压力下都不能成为金属的物理机制。在施加压力的情况下,固态氢无法实现费米相或奇异金属相。电阻和拉曼数据表明,分子或原子固态氢中的载流子密度和大角度电子-离子散射引起的电阻率不足。在没有费米金属相或奇异金属相的情况下,固态氢在任何温度和压力下都不能超导。掺杂氢形成超氢化物可导致低电阻率金属相。我们的研究表明,由于观察到具有大载流子密度的奇异常态金属相,Sn-H 超氢化物的电阻和磁阻数据确实表明其具有超导性(在高压下)。我们利用电离能理论和低温费米液体输运理论推导出了磁阻公式和磁场诱导散射率机制,从而证明了 Sn-H 中遵从 Arulsamy 费米子和超导性的奇异金属相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
期刊最新文献
Phononic, photonic and excitonic properties of ∼5 nm diameter aligned CdSe nanowires Effects of ferrous ion doping on the structural, optical, and electronic properties of tin tungstate materials High-performance NiMn2O4@MXene nanocomposites for aqueous zinc-ion battery Facile synthesis of carbon particles composed of N-doped carbon nanotube and their application in lithium-ion batteries Sonochemical synthesis of mesoporous ZnyCd1-yS quantum dots: Composition-dependent optical, electrical, dielectric, and hydrogen-generation characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1