{"title":"A mean shift algorithm incorporating reachable distance for spatial clustering","authors":"","doi":"10.1016/j.ins.2024.121456","DOIUrl":null,"url":null,"abstract":"<div><p>Spatial clustering is a widely used technique in spatial analysis that groups similar objects together based on their proximity in space. However, traditional clustering algorithms often fail to ensure the accessibility of cluster centers, which limits their validity in practical applications such as facility location problems. To address this issue, this article introduces a novel Mean Shift algorithm that incorporates reachable distance and an iterative mechanism to accurately locate cluster centers. The proposed algorithm initially labels clustering elements with road network coordinates to facilitate the calculation of reachable distance and the cluster center iterative mechanism. Subsequently, the mean shift vector function is modified to employ reachable distance as the measure of geographic reachable similarity. Unlike existing algorithms, our approach allows for cluster centers to be positioned independently of the clustering elements, guaranteeing geographical accessibility. Through simulation experiments, we demonstrate that our proposed algorithm not only outperforms existing methods in terms of solution quality, but also effectively addresses the limitations of disregarding geographical obstacles and unreachable cluster centers.</p></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524013707","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial clustering is a widely used technique in spatial analysis that groups similar objects together based on their proximity in space. However, traditional clustering algorithms often fail to ensure the accessibility of cluster centers, which limits their validity in practical applications such as facility location problems. To address this issue, this article introduces a novel Mean Shift algorithm that incorporates reachable distance and an iterative mechanism to accurately locate cluster centers. The proposed algorithm initially labels clustering elements with road network coordinates to facilitate the calculation of reachable distance and the cluster center iterative mechanism. Subsequently, the mean shift vector function is modified to employ reachable distance as the measure of geographic reachable similarity. Unlike existing algorithms, our approach allows for cluster centers to be positioned independently of the clustering elements, guaranteeing geographical accessibility. Through simulation experiments, we demonstrate that our proposed algorithm not only outperforms existing methods in terms of solution quality, but also effectively addresses the limitations of disregarding geographical obstacles and unreachable cluster centers.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.