{"title":"Stresses induced in a buried corrugated metal arch culvert due to backfilling compaction efforts","authors":"","doi":"10.1016/j.tust.2024.106096","DOIUrl":null,"url":null,"abstract":"<div><p>The use of flexible buried corrugated metal culverts (CMCs) for traffic and watercourses has recently expanded as a promising technique for shallow underground tunnelling. However, in the design of such structures it is challenging to mimic the performance of the mobilized soil-structure interaction. The backfilling process, with the use of compaction forces, can be considered the major loading mode that develops the predominant deformations and internal forces in the culvert body. Therefore, a thorough understanding of the backfilling process and its effects can contribute to improving CMC design methodology. In this study, a laboratory experiment was used to investigate a flexible buried corrugated metal open-bottom arch culvert, where the compaction impact was monitored during each backfill stage. Following the installation of the culvert in a rigid steel tank, seven sequenced backfill layers were added and compacted, until the target cover depth was reached. Culvert deformations and internal forces were recorded during each backfilling stage. Moreover, the variations in vertical soil stresses developed due to backfilling were measured at two locations: the surface of the bedding soil, and just above the culvert crown. In addition, the lateral perpendicular stresses induced at the exterior circumference of the culvert body near the midpoint of each side backfill layer were measured during backfilling. Finally, a numerical analysis using 3D finite element modelling was performed to simulate the construction sequence of the laboratory test during the backfilling process. The numerical modelling results for the culvert deformations and internal forces were then validated against the recorded measurements obtained in the laboratory experiment and a numerical procedure to simulate the induced backfilling efforts was recommended.</p></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0886779824005145/pdfft?md5=3878cac9c71ee5b56096080b3421353c&pid=1-s2.0-S0886779824005145-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779824005145","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of flexible buried corrugated metal culverts (CMCs) for traffic and watercourses has recently expanded as a promising technique for shallow underground tunnelling. However, in the design of such structures it is challenging to mimic the performance of the mobilized soil-structure interaction. The backfilling process, with the use of compaction forces, can be considered the major loading mode that develops the predominant deformations and internal forces in the culvert body. Therefore, a thorough understanding of the backfilling process and its effects can contribute to improving CMC design methodology. In this study, a laboratory experiment was used to investigate a flexible buried corrugated metal open-bottom arch culvert, where the compaction impact was monitored during each backfill stage. Following the installation of the culvert in a rigid steel tank, seven sequenced backfill layers were added and compacted, until the target cover depth was reached. Culvert deformations and internal forces were recorded during each backfilling stage. Moreover, the variations in vertical soil stresses developed due to backfilling were measured at two locations: the surface of the bedding soil, and just above the culvert crown. In addition, the lateral perpendicular stresses induced at the exterior circumference of the culvert body near the midpoint of each side backfill layer were measured during backfilling. Finally, a numerical analysis using 3D finite element modelling was performed to simulate the construction sequence of the laboratory test during the backfilling process. The numerical modelling results for the culvert deformations and internal forces were then validated against the recorded measurements obtained in the laboratory experiment and a numerical procedure to simulate the induced backfilling efforts was recommended.
期刊介绍:
Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.