FEM-PIKFNN for underwater acoustic propagation induced by structural vibrations in different ocean environments

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Computers & Mathematics with Applications Pub Date : 2024-09-17 DOI:10.1016/j.camwa.2024.09.007
Qiang Xi , Zhuojia Fu , Wenzhi Xu , Mi-An Xue , Youssef F. Rashed , Jinhai Zheng
{"title":"FEM-PIKFNN for underwater acoustic propagation induced by structural vibrations in different ocean environments","authors":"Qiang Xi ,&nbsp;Zhuojia Fu ,&nbsp;Wenzhi Xu ,&nbsp;Mi-An Xue ,&nbsp;Youssef F. Rashed ,&nbsp;Jinhai Zheng","doi":"10.1016/j.camwa.2024.09.007","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a novel hybrid method based on the finite element method (FEM) and physics-informed kernel function neural network (PIKFNN) is proposed. The method is applied to predict underwater acoustic propagation induced by structural vibrations in diverse ocean environments, including the unbounded ocean, deep ocean, and shallow ocean. In the hybrid method, PIKFNN is regarded as an improved shallow physics-informed neural network (PINN) in which the activation function in the PINN is replaced with a physics-informed kernel function (PIKF). This ensures the integration of prior physical information into the neural network model. Moreover, PIKFNN circumvents embedding the governing equations into the loss function in the PINN and requires only training on boundary data. By using Green's function as PIKF and the structural-acoustic coupling response information obtained from the FEM as training data, PIKFNN can inherently capture the Sommerfeld radiation condition at infinity, which are naturally suitable for predicting ocean acoustic propagation. Numerical experiments demonstrate the accuracy and feasibility of FEM-PIKFNN in comparison with analytical solutions and finite element results.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004152","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel hybrid method based on the finite element method (FEM) and physics-informed kernel function neural network (PIKFNN) is proposed. The method is applied to predict underwater acoustic propagation induced by structural vibrations in diverse ocean environments, including the unbounded ocean, deep ocean, and shallow ocean. In the hybrid method, PIKFNN is regarded as an improved shallow physics-informed neural network (PINN) in which the activation function in the PINN is replaced with a physics-informed kernel function (PIKF). This ensures the integration of prior physical information into the neural network model. Moreover, PIKFNN circumvents embedding the governing equations into the loss function in the PINN and requires only training on boundary data. By using Green's function as PIKF and the structural-acoustic coupling response information obtained from the FEM as training data, PIKFNN can inherently capture the Sommerfeld radiation condition at infinity, which are naturally suitable for predicting ocean acoustic propagation. Numerical experiments demonstrate the accuracy and feasibility of FEM-PIKFNN in comparison with analytical solutions and finite element results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同海洋环境中结构振动诱导的水下声传播有限元-PIKFNN
本文提出了一种基于有限元法(FEM)和物理信息核函数神经网络(PIKFNN)的新型混合方法。该方法被应用于预测无边界海洋、深海和浅海等不同海洋环境中由结构振动引起的水下声传播。在混合方法中,PIKFNN 被视为改进的浅层物理信息神经网络(PINN),PINN 中的激活函数被物理信息核函数(PIKF)所取代。这确保了将先验物理信息纳入神经网络模型。此外,PIKFNN 避免了在 PINN 损失函数中嵌入控制方程,只需在边界数据上进行训练。PIKFNN 使用格林函数作为 PIKF,并将有限元得到的结构-声耦合响应信息作为训练数据,可以捕捉无穷远处的 Sommerfeld 辐射条件,自然适用于预测海洋声波传播。数值实验证明了 FEM-PIKFNN 与分析解和有限元结果相比的准确性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
期刊最新文献
Numerical study of magnesium dendrite microstructure under convection: Change of dendrite symmetry Topology optimization design of labyrinth seal-type devices considering subsonic compressible turbulent flow conditions An implementation of hp-FEM for the fractional Laplacian Modular parametric PGD enabling online solution of partial differential equations An implicit GNN solver for Poisson-like problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1