Seunghwan Choi , Jeungeun Kum , Seon Young Hyun , Tae Young Park , Hyungmin Kim , Sun Kwang Kim , Jaeho Kim
{"title":"Transcranial focused ultrasound stimulation enhances cerebrospinal fluid movement: Real-time in vivo two-photon and widefield imaging evidence","authors":"Seunghwan Choi , Jeungeun Kum , Seon Young Hyun , Tae Young Park , Hyungmin Kim , Sun Kwang Kim , Jaeho Kim","doi":"10.1016/j.brs.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Cerebrospinal fluid (CSF) flow is crucial for brain homeostasis and its dysfunction is highly associated with neurodegenerative diseases. Restoring CSF circulation is proposed as a key strategy for the treatment of the diseases. Among the methods to improve CSF circulation, focused ultrasound (FUS) stimulation has emerged as a promising non-invasive brain stimulation technique, with effectiveness evidenced by <em>ex vivo</em> studies. However, due to technical disturbances in <em>in vivo</em> imaging combined with FUS, direct evidence of real-time <em>in vivo</em> CSF flow enhancement by FUS remains elusive.</p></div><div><h3>Objective</h3><p>To investigate whether FUS administered through the skull base can enhance CSF influx in living animals with various real-time imaging techniques.</p></div><div><h3>Methods</h3><p>We demonstrate a novel method of applying FUS through the skull base, facilitating cortical CSF influx, evidenced by diverse <em>in vivo</em> imaging techniques. Acoustic simulation confirmed effective sonication of our approach through the skull base. After injecting fluorescent CSF tracers into cisterna magna, FUS was administered at the midline of the jaw through the skull base for 30 min, during which imaging was performed concurrently.</p></div><div><h3>Results</h3><p>Enhanced CSF influx was observed in macroscopic imaging, demonstrated by the influx area and intensity of the fluorescent dyes after FUS. In two-photon imaging, increased fluorescence was observed in the perivascular space (PVS) after stimulation. Moreover, particle tracking of microspheres showed more microspheres entering the imaging field, with increased mean speed after FUS.</p></div><div><h3>Conclusion</h3><p>Our findings provide direct real-time <em>in vivo</em> imaging evidence that FUS promotes CSF influx and flow in the PVS.</p></div>","PeriodicalId":9206,"journal":{"name":"Brain Stimulation","volume":"17 5","pages":"Pages 1119-1130"},"PeriodicalIF":7.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1935861X24001591/pdfft?md5=f6d68ddbe0c81b92aa048d3ed7c57acf&pid=1-s2.0-S1935861X24001591-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Stimulation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1935861X24001591","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Cerebrospinal fluid (CSF) flow is crucial for brain homeostasis and its dysfunction is highly associated with neurodegenerative diseases. Restoring CSF circulation is proposed as a key strategy for the treatment of the diseases. Among the methods to improve CSF circulation, focused ultrasound (FUS) stimulation has emerged as a promising non-invasive brain stimulation technique, with effectiveness evidenced by ex vivo studies. However, due to technical disturbances in in vivo imaging combined with FUS, direct evidence of real-time in vivo CSF flow enhancement by FUS remains elusive.
Objective
To investigate whether FUS administered through the skull base can enhance CSF influx in living animals with various real-time imaging techniques.
Methods
We demonstrate a novel method of applying FUS through the skull base, facilitating cortical CSF influx, evidenced by diverse in vivo imaging techniques. Acoustic simulation confirmed effective sonication of our approach through the skull base. After injecting fluorescent CSF tracers into cisterna magna, FUS was administered at the midline of the jaw through the skull base for 30 min, during which imaging was performed concurrently.
Results
Enhanced CSF influx was observed in macroscopic imaging, demonstrated by the influx area and intensity of the fluorescent dyes after FUS. In two-photon imaging, increased fluorescence was observed in the perivascular space (PVS) after stimulation. Moreover, particle tracking of microspheres showed more microspheres entering the imaging field, with increased mean speed after FUS.
Conclusion
Our findings provide direct real-time in vivo imaging evidence that FUS promotes CSF influx and flow in the PVS.
期刊介绍:
Brain Stimulation publishes on the entire field of brain stimulation, including noninvasive and invasive techniques and technologies that alter brain function through the use of electrical, magnetic, radiowave, or focally targeted pharmacologic stimulation.
Brain Stimulation aims to be the premier journal for publication of original research in the field of neuromodulation. The journal includes: a) Original articles; b) Short Communications; c) Invited and original reviews; d) Technology and methodological perspectives (reviews of new devices, description of new methods, etc.); and e) Letters to the Editor. Special issues of the journal will be considered based on scientific merit.