{"title":"Relating behaviour of data-aware process models","authors":"Marco Montali, Sarah Winkler","doi":"10.1016/j.datak.2024.102363","DOIUrl":null,"url":null,"abstract":"<div><p>Data Petri nets (DPNs) have gained traction as a model for data-aware processes, thanks to their ability to balance simplicity with expressiveness, and because they can be automatically discovered from event logs. While model checking techniques for DPNs have been studied, more complex analysis tasks that are highly relevant for BPM are beyond methods known in the literature. We focus here on equivalence and inclusion of process behaviour with respect to language and configuration spaces, optionally taking data into account. Such comparisons are important in the context of key process mining tasks, namely process repair and discovery, and related to conformance checking. To solve these tasks, we propose approaches for bounded DPNs based on <em>constraint graphs</em>, which are faithful abstractions of the reachable state space. Though the considered verification tasks are undecidable in general, we show that our method is a decision procedure DPNs that admit a <em>finite history set</em>. This property guarantees that constraint graphs are finite and computable, and was shown to hold for large classes of DPNs that are mined automatically, and DPNs presented in the literature. The new techniques are implemented in the tool <span>ada</span>, and an evaluation proving feasibility is provided.</p></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"154 ","pages":"Article 102363"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169023X24000879/pdfft?md5=ee932b18bac18fd1e3c1e769269d7d67&pid=1-s2.0-S0169023X24000879-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24000879","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Data Petri nets (DPNs) have gained traction as a model for data-aware processes, thanks to their ability to balance simplicity with expressiveness, and because they can be automatically discovered from event logs. While model checking techniques for DPNs have been studied, more complex analysis tasks that are highly relevant for BPM are beyond methods known in the literature. We focus here on equivalence and inclusion of process behaviour with respect to language and configuration spaces, optionally taking data into account. Such comparisons are important in the context of key process mining tasks, namely process repair and discovery, and related to conformance checking. To solve these tasks, we propose approaches for bounded DPNs based on constraint graphs, which are faithful abstractions of the reachable state space. Though the considered verification tasks are undecidable in general, we show that our method is a decision procedure DPNs that admit a finite history set. This property guarantees that constraint graphs are finite and computable, and was shown to hold for large classes of DPNs that are mined automatically, and DPNs presented in the literature. The new techniques are implemented in the tool ada, and an evaluation proving feasibility is provided.
期刊介绍:
Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.